
Information and Software Technology 54 (2012) 663–685
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Tools used in Global Software Engineering: A systematic mapping review

Javier Portillo-Rodríguez a,⇑, Aurora Vizcaíno a, Mario Piattini a, Sarah Beecham b

a Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071 Ciudad Real, Spain
b Lero-The Irish Software Engineering Research Centre, University of Limerick, Ireland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 June 2010
Received in revised form 24 February 2012
Accepted 28 February 2012
Available online 7 March 2012

Keywords:
Global Software Development
Distributed Software Engineering
Tool
Systematic Mapping Study
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.02.006

⇑ Corresponding author.
E-mail addresses: javier.portillo@uclm.es (J. Port

no@uclm.es (A. Vizcaíno), mario.piattini@uclm.es (M
lero.ie (S. Beecham).
Context: This systematic mapping review is set in a Global Software Engineering (GSE) context, charac-
terized by a highly distributed environment in which project team members work separately in different
countries. This geographic separation creates specific challenges associated with global communication,
coordination and control.
Objective: The main goal of this study is to discover all the available communication and coordination
tools that can support highly distributed teams, how these tools have been applied in GSE, and then to
describe and classify the tools to allow both practitioners and researchers involved in GSE to make use
of the available tool support in GSE.
Method: We performed a systematic mapping review through a search for studies that answered our
research question, ‘‘Which software tools (commercial, free or research based) are available to support
Global Software Engineering?’’ Applying a range of related search terms to key electronic databases,
selected journals, and conferences and workshops enabled us to extract relevant papers. We then used
a data extraction template to classify, extract and record important information about the GSD tools from
each paper. This information was synthesized and presented as a general map of types of GSD tools, the
tool’s main features and how each tool was validated in practice.
Results: The main result is a list of 132 tools, which, according to the literature, have been, or are intended
to be, used in global software projects. The classification of these tools includes lists of features for com-
munication, coordination and control as well as how the tool has been validated in practice. We found
that out the total of 132, the majority of tools were developed at research centers, and only a small per-
centage of tools (18.9%) are reported as having been tested outside the initial context in which they were
developed.
Conclusion: The most common features in the GSE tools included in this study are: team activity and
social awareness, support for informal communication, Support for Distributed Knowledge Management
and Interoperability with other tools. Finally, there is the need for an evaluation of these tools to verify
their external validity, or usefulness in a wider global environment.

� 2012 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 664
2. Systematic mapping review of tools to support GSE . 665
2.1. Definition of research question . 665
2.2. Conducting the search. 665
2.3. Screening of papers and Keywording of Abstracts . 665
2.4. Data/information extraction and mapping of studies . 666
2.4.1. Validation of tool classification scheme . 667
3. Results and discussion . 668
3.1. Classification of features . 668
3.2. Tool classification and description . 671
ll rights reserved.

illo-Rodríguez), aurora.vizcai
. Piattini), sarah.beecham@

http://dx.doi.org/10.1016/j.infsof.2012.02.006
mailto:javier.portillo@uclm.es
mailto:aurora.vizcai no@uclm.es
mailto:aurora.vizcai no@uclm.es
mailto:mario.piattini@uclm.es
mailto:sarah.beecham@ lero.ie
mailto:sarah.beecham@ lero.ie
http://dx.doi.org/10.1016/j.infsof.2012.02.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

664 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
3.2.1. Tools and features used in each knowledge area . 672
3.2.1.1. Requirement Tools (SRTs) . 672
3.2.1.2. Design Tools (SDTs). 672
3.2.1.3. Construction Tools (SCTs) . 672
3.2.1.4. Testing Tools (STTs). 672
3.2.1.5. Maintenance Tools (SMTs) . 672
3.2.1.6. Configuration Management Tools (SCMTs) . 672
3.2.1.7. Engineering Management Tools (SEMTs) . 675
3.2.1.8. Engineering Process Tools (SEPTs) . 675
3.2.1.9. Quality Tools (SQTs) . 675
3.2.1.10. Miscellaneous Tool Issues (MTIs) . 675
3.2.1.11. Knowledge Management Tools (KMTs) . 675
3.2.1.12. Virtual Meeting Tools (VMTs). 675
3.2.1.13. Socio-Cultural Tools (S-CTs) . 675

3.2.2. Common groups of features provided by the studied tools . 675
3.2.3. Tools’ evaluation. 676

4. Threats to validity . 677
5. Conclusions and future work. 678

Acknowledgements . 678
Appendix A . 678
Appendix B . 681
References . 684
1. Introduction

Global Software Engineering (GSE) has become a growing area
of research, apart from being an expanding trend in the Informa-
tion Technology (IT) industry [3]. GSE requires software tools
(management tools, development tools, etc.) to support the special
characteristics that this environment has, and which have princi-
pally come about as a result of the distance factor (temporal, geo-
graphic and socio-cultural distance) [4].

Modern software development, such as globally dispersed
teams, creates specific challenges and risks (in spite of the benefits
that can be obtained) for the software industry, which need to be
considered [5]. In fact, developing software systems through col-
laboration with other partners and in different geographical loca-
tions is a great challenge for organizations [6,7].

Software tools for GSE should therefore help to alleviate prob-
lems such as: (a) Geographic Dispersion, which sometimes causes
a loss of synchronous communication or team interactions, since
the sites are in different time zones; (b) Control and Coordination
Breakdown, owing to the difficulties created by a distributed envi-
ronment; (c) Loss of Communication; this is the case in this type of
environment, if we consider that the richest communication med-
ium is face-to-face communication; (d) Loss of Team Spirit and trust
among team members [8] and (e) Cultural Differences which occur
when people from different cultures work together in a global
environment [9].

Tools designed to alleviate the challenges stated above should
therefore include special features, such as supporting the interac-
tion of distributed teams by applying communication and
collaboration technology [10], supporting the development of
real-world projects [11], minimizing the cost of the tools and
infrastructure needed, along with their maintenance effort [12]
or helping to create a feeling of trust between the members
[13,14], and facilitating the knowledge of team ethics [15], among
others. However, there is insufficient information regarding
which tools are able to assist in the aforementioned challenges,
or about which particular tools offer features that are suitable
to allow them to be used in a GSE environment. The most that
we can affirm is that certain surveys exist in which some of the
existing tools, usually those regarding collaboration, are briefly
presented. A good example of this is [16], in which the authors
present a set of collaboration tools for GSE, classified by the areas
in which they can be used.

In this respect, tools from the area of Distributed Software Engi-
neering (DSE) often include interesting features that may be useful
in a global environment. Moreover, according to the study pre-
sented in [17], collaborative software tools for distributed develop-
ment constitute one of the research areas in which important
research questions need to be addressed. For example, selecting
appropriate tools that correspond to the characteristics of glob-
ally-distributed projects is not an easy task [18] since, among other
reasons, there is not enough information about the tools that are
available to support GSE teams.

The goal of this work is, therefore, to carry out a systematic map-
ping review of GSE tools, in order to obtain information about
which tools are available for GSE and what features they include.
This review was performed by following the process described in
[1] which explains how effective such studies have been when used
for software engineering topics. Other systematic mapping review
papers in this field, such as that shown in [2], were also studied.
The main goal of our review is to compile the most complete list
of GSE tools possible and to present these results as a visual sum-
mary (map) of classified features. The classification of the tools will
be based on an extraction of common features across studies (prin-
cipally related to communication, owing to its importance).

Companies, practitioners and researchers may find this work use-
ful, since it provides a wide description of tools. That being the case,
companies and practitioners can use this paper before buying a tool,
and employ it as preliminary information about what tools exist and
what their features are. Researchers can also consult the paper to
discover the state of the technology in the field of GSE, and to
observe how tools can be grouped according to the process they sup-
port. The fact that this paper is the first systematic study of GSE tools
makes it a significant contribution to the GSE community.

This work is structured as follows. In Section 2 we outline the
methodology used to perform the systematic mapping review,
including question formulation, the selection of sources and stud-
ies, information extraction and the mapping process. In Section 3,
the results obtained after performing the systematic mapping
review are presented. In Section 4 we discuss the threats to the
validity of the results. Finally, in Section 5, we outline the conclu-
sions obtained.

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 665
2. Systematic mapping review of tools to support GSE

The systematic mapping review which follows has been devel-
oped by using the guidelines presented in [1] and taking into ac-
count the information obtained after studying other systematic
mapping reviews, for example, [19–22]. In this section, we provide
an overview of the steps involved in the process.

2.1. Definition of research question

The tools which are available for use in GSE were obtained by
formulating the following question:

Which software tools (commercial, free or research based) are
available to support Global Software Engineering?

In this work, ‘‘research tools’’ are considered to be those devel-
oped by researchers in research labs or groups, which are not
developed for profit or commercially available. These tools are
not usually available for download and must be obtained on re-
quest from the researchers who developed them.

‘‘Free’’ research tools are those that are open source, where
there is no obligation to pay for the license. ‘‘Commercial’’ tools
on the other hand require a payment for the license, though they
may offer a free trial period.

The list of keywords used to discover and answer the research
question consisted of:tool, software, global, engineering, development
and distributed.

The research question selected was expected to provide the fol-
lowing results once the systematic mapping review had been com-
pleted. Our intention was that the information would tell us:

– Which software tools are used/available in the context of GSE.
In this case, the area of Distributed Software Engineering
(DSE) was also considered within the context of GSE.

– The main features that GSE tools often include.
– The classification of the software tools that are available,

depending on their features or/and the areas in which they
are used.

The population observed was the set of software tools, com-
posed of both those that have been presented as specific tools to
support GSE, and those which were not specifically designed to
support GSE, but which contain features that are useful in GSE.
The set of tools was compiled through a study of the assortment
of published work shown in our list of sources and presented in
the following section.

2.2. Conducting the search

The list of keywords shown above was combined by using the
logical connectors ‘‘OR’’ and ‘‘AND’’, to obtain the main search
string (see Table 1). The search string thus had the structure P1
AND P2 AND P3, each part of which is defined as follows:

P1: tool OR technology.
P2: global OR distributed.
P3: software development OR software engineering.

The terms used in the search string are commonly employed in
GSE/DSE research, and this implied encountering a large amount of
non-useful papers, but the idea of this review was to obtain the
Table 1
Search string.

(tool or technology) AND ((global OR distributed) AND (software development OR so
maximum number of tools. We should state, however, that in line
with the research question, inclusion and exclusion criteria that
were designed to obtain solely useful work were used. With P1,
we aimed to obtain all those pieces of work in which anything re-
lated to tools was included. With P2 and P3, we wished to find
work related to GSE and DSE. It was deemed that DSE would be
considered to be GSE if the level of distribution was sufficiently
high.

The list of the sources selected, and in which the search strings
were executed to carry out the systematic review, is:

� Science@Direct, on the subject of Computer Science.
� Wiley InterScience, on the subject of Computer Science.
� IEEE Digital Library from the Computer Society.
� ACM Digital Library.

This list of sources was selected from the recommendations
made by experts in the area of this systematic review. These
sources include certain highly important journals, in which our re-
search area is widely dealt with, such as: Information and Software
Technology, IEEE Software, Computer, Information and Manage-
ment, and Systems and Software. Moreover, from IEEE we included
the proceedings of the most relevant conference on GSE (Interna-
tional Conference on Global Software Engineering – ICGSE).

The search string presented above was adapted to each search
engine of the respective sources (see Table 2), owing to the special
features or restrictions that each search engine had. For instance,
the ACM Digital Library allows other publishers’ papers to be
searched for, but in this case we only wished to use the ACM search
engine to access those papers published by ACM itself, thereby
avoiding duplicated work. This feature was obtained (as is shown
in Table 2) by ensuring that the publisher in the search string
was ACM.

This table has been included to permit possible future reviews
of the results obtained. By selecting the options indicated in each
search engine, the same results should therefore be obtained.

Another restriction included in all the search engines was that
of selecting only those pieces of work published from the year
2000 onwards, since, regardless of the particular research area,
tools become obsolete after a few years, owing to the rapid evolu-
tion of technology. We therefore believe that any tools mentioned
before the year 2000 can now be considered as obsolete. Moreover,
taking GSE as an effect of globalization and as a 21st century trend
[23], only studies performed after 2000 have been considered to be
important in this work.
2.3. Screening of papers and Keywording of Abstracts

The goal of this step was to identify the relevant papers, with
regard both to the objectives of this review and to the scope of
the research questions. The main difficulty in achieving this goal
was that the terms used in the question led to results which were
far too wide-ranging. For example, the word ‘‘tool’’ is broadly used
in many kinds of publication, and a large amount of papers there-
fore appeared in the first results obtained, as is shown in Table 3.

The step used to classify the scheme (Keywording of Abstract) is
not clearly described in [1] (the paper followed to perform this
study). That being the case, in order to obtain the most valuable pa-
pers and to achieve a more in-depth analysis in relation to our re-
search goal and the research question, we defined four stages
ftware engineering))

Table 2
Search strings by source.

Source Specific search string Extra options included

Science Direct pub-date > 1999 and ((tool or technology) and (‘‘global software development’’ or ‘‘global
software engineering’’ or ‘‘distributed software development’’ or ‘‘distributed software
engineering’’))

Selection of ‘‘Computer Science’’ as subject in
Expert Search menu

Wiley InterScience ((tool or technology) and (‘‘global software development’’ or ‘‘global software
engineering’’ or ‘‘distributed software development’’ or ‘‘distributed software
engineering’’))

Selection of publications from the year 2000

IEEE CS ((tool or technology) and (‘‘global software development’’ or ‘‘global software
engineering’’ or ‘‘distributed software development’’ or ‘‘distributed software
engineering’’))

Unmarked searching in ACM Digital Library and
selection of publications from the year 2000

ACM Digital Library (((tool or technology) and (‘‘global software development’’ or ‘‘global software
engineering’’ or ‘‘distributed software development’’ or ‘‘distributed software
engineering’’)) and (Publisher:ACM))

Selection of publications from the year 2000

Table 3
Selection of studies.

Phase Inclusion criteria Papers remaining

SD WI IEEE ACM

Based on Search English language, from the year 2000, containing the search string terms 174 43 836 385
Exclusion upon Title Does not include proceedings frontmatter/backmatter, notes, comments,

workshops or letters and repeated works
168 42 734 271

Exclusion upon Abstract Discusses tool support for GSD or DSD 18 7 74 48
Exclusion upon Full Text Presents specific tools or systems for GSD or DSD 8 5 30 23

666 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
(summarized in Table 3), following the indications provided in
[24].

During the process of the study selection we assumed that the
quality of the papers obtained would be ensured by the evaluation
process followed in deciding what papers to publish. However, this
selection of studies is not based on quality but rather on relevance.
When choosing, we aimed to gather relevant papers which were in
accordance with the focus of the research question and the review
goal. As has already been mentioned, the most relevant papers
were obtained by performing four stages or phases in each source.

The first stage (Based on Search) consisted of recovering an ini-
tial set of papers by using the sources’ search engines and the
strings presented above in Table 2. In this first phase, we obtained
a high number of results in some cases (ACM or IEEE), but in many
other cases these results were not useful, since they consisted of
comments, letters or repeated work.

The second stage (Exclusion upon Title) thus consisted of elim-
inating both non-useful results and repeated work, by considering
only the title (and, in some cases, the author(s)) of each result. In
this case, non-useful results were those that were not journal arti-
cles, workshop papers and conference papers. A result was consid-
ered to be repeated if there was another paper with the same title
and the same authors.

Once we had eliminated the non-useful results, we began a
revision phase by studying abstracts (Exclusion upon Abstract).
This phase consisted of examining the paper’s abstract, in order
to ascertain whether the subject of the paper was related to tool
support for GSE/DSE or whether the work focused on presenting
a specific tool. This phase was carried out in two steps, the first
of which consisted of a rapid review of paper abstracts. However,
we realized that, in some cases, merely reviewing the paper’s ab-
stract was not sufficient, and that it would also be necessary to re-
view the work’s conclusions.

Finally, in order to obtain the definitive list of primary studies, a
complete review of the texts of the papers (Exclusion upon Full
Text) remaining from the previous phase was carried out. In this
case, all the papers were related to tool support, or presented a spe-
cific tool. However, we encountered two problems. The first was
that we had papers presenting tools for DSE but we did not know
whether the tools mentioned would be useful for GSE. In these
cases, we reviewed the texts in full to discover whether the tools
had been designed for co-located teams (low level of distribution)
or for a higher level of distribution. In this respect, we decided that
Web-based tools can be used in a globally distributed environment
because they are accessible from any Web browser. The second
problem in this phase was that some papers were related to tool
support for GSE/DSE, but they discussed types of tools (communica-
tion tools, design tools, etc.) or tool features (chat, e-mail, etc.)
without referring to a specific tool. All these works were eliminated.

Once these two problems had been solved by reviewing the
texts of the remaining papers in full, we obtained the list of 66 pri-
mary studies presented in Appendix A.

In just a few cases, different papers mentioned or presented the
same tool. We therefore checked all the papers regarding the same
tool and rejected those that simply mentioned the tool and did not
provide any useful information about it. Moreover, in those cases
in which a tool was presented in several papers, we selected the
most up-to-date paper as the primary study associated with each
tool. In this study, each tool has therefore been related to just
one paper (primary study). It is also important to note that one pa-
per may include several tools.

What is more, in order to avoid missing any important informa-
tion about a tool, we checked the information provided in the other
papers that had been rejected. In all cases, the information pro-
vided by both papers was similar, and the updated paper usually
contained more information since, for instance, a new version of
the tool had been implemented and or tested.

2.4. Data/information extraction and mapping of studies

Once the primary studies had been chosen, the relevant infor-
mation for the systematic review was obtained. The inclusion cri-
terion for the information originating from the primary studies
consisted of the names of specific software tools, the area in which
they are used and the features that make them usable in a GSE
environment. The information from the primary publications was
stored in a table similar to Table 4, in which the data extraction for-
mat was structured in two parts: The first part was used to obtain
information about the study and the second was used to obtain
information about the tools found in the study.

Table 4
Data extraction form.

Information extraction from the study
Study ID 20
Title CAMEL: A Tool for Collaborative Distributed Software Design
Authors Marcelo Cataldo, Charles Shelton, Yongjoon Choi, Yun-Yin Huang, Vytesh Ramesh, Darpan Saini, Liang-Yun Wang
Publishing

site
IEEE International Conference on Global Software Engineering 2009 (ICGSE 2009)

Publishing
date

July, 2009

Context Software design activities require rich communication channels in which developers can exchange information in multiple ways. It is well established
that geographic distribution makes a negative impact on the effectiveness of design meetings

Tool focused Yes

Name URL Description Area License Collaboration features Designed
for GSE

Tested
in GSE

Benefits for GSE

Tools discovered (list of 1 or more tools)
CAMEL http://

code.google.com/p/
cameldesigntool/

Collaborative tool to
support the design
process

Design Research – This tool allows synchronous design
meetings

– Includes a chat tool
– Includes awareness features such as

action awareness through color
identification

– Includes a team view to identify team
members

Yes No Helps to reduce
geographical
distance

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 667
Information about the studies was obtained by considering the
following column: study id, to identify each study, title of the
study, the authors, publishing site (journal, conference proceed-
ings, etc.), its date, and the context of the study (mainly to discover
in which area the tools can be used and whether the study is fo-
cused on tools or whether the tools are only a complementary to-
pic of the study).

The following columns were deemed useful to obtain informa-
tion about each tool: name of the tool, URL from which it can be
downloaded (or in which it is described), a brief description of
the tool and the area in which it is used, considering the areas de-
fined in the SWEBOK [25] and three more areas (Knowledge Man-
agement Tools, Virtual Meeting Tools and Socio-Cultural Tools) not
included in the SWEBOK (all the areas considered will be defined in
Section 3.1).

The following were also obtained: information about the tools’
‘‘license’’ (commercial, research or free); which collaboration fea-
tures (useful in GSE) it includes; whether the tool has been specif-
ically designed for GSE or has not been designed for GSE but can be
used in it; information about whether the tool has been tested in a
GSE context; and finally, what particular benefits in terms of dis-
tance (geographical distance, temporal distance and socio-cultural
distance) can be obtained by using the tool.

We consider features that help to confront GSE challenges to be
those which focus on supporting distributed communication, those
supporting distributed coordination or control and features that
help to reduce socio-cultural distance between distributed team
members. The goal of including each tool’s characteristics is to ob-
tain a set of common features that the GSE tools include. This set of
feature categories will be useful in classifying the tools found.

Extracting information about each tool’s characteristics was not
a simple task, since in some of the primary studies the information
about the tool features was insufficient. In these cases, we
consulted the tool’s website (where one existed) to extract
information about features. Moreover, it was impossible for the
information extracted to be as complete as we would have liked,
since the tools might have features that could only be recognized
by actually installing and using the tool, which was not within
the scope of this study.

The information gathered by using the aforementioned table
made it possible to extract an initial map to show how the primary
studies are distributed, in terms of time and the type of tool pre-
sented in each one.
The map in Fig. 1 (right-hand side) shows the total number of
selected papers. It will be noted that the topic of GSE in general,
and GSE tools in particular, is one in which there is an increasing
amount of interest, mainly from 2006 onwards. This increase is
not uniform in all the areas studied. Areas such as Knowledge Man-
agement Tools (KMTs), Virtual Meeting Tools (VMTs) and Software
Engineering Management Tools (SEMTs) have been continuously
tackled in publications over the last few years, while other areas,
such as those of Software Quality Tools (SQTs) or Software Engi-
neering Process Tools (SEPTs), are only dealt with in a few publica-
tions. What is more, the area of Socio-Cultural Tools (S-CTs), while
not dealt with much in early years, has recently been gaining
importance. This change has come about because of the problems
that exist in GSD, which have arisen as a result of the cultural and
social differences between globally distributed teams.

In terms of tools (see left-hand side of Fig. 1), the biggest group
is that of Research Tools (58 tools), since the papers studied are, on
the whole, research works, while the smallest group is that of Com-
mercial Tools (30 tools). However, some free, commercial or re-
search tools exist for almost all the processes. Companies can
thus decide whether they prefer a commercial tool, a free tool, or
whether they would rather obtain a research tool. It is important
to note that the 2010 data included in Fig. 1 appertains to the first
quarter of 2010.
2.4.1. Validation of tool classification scheme
In order to ensure that the classification of tools and papers was

reliable, we decided to ask three different researchers to carry out
three different classifications and then check the level of agree-
ment among them in the classification. The level of agreement
was checked by applying an inter-rater reliability analysis using
the Kappa statistic, which determines the consistency among rat-
ers. To be more precise, we used the Fleiss Kappa statistic, which
can be applied for 2 or more raters (in our case 3 raters). By using
the data presented in Table 5, we obtained a Kappa value of 0.952,
which means an almost perfect agreement in the tools’ classifica-
tion. Moreover, we obtained a Kappa value of 0.966, also meaning
an almost perfect agreement in the papers’ classification.

We can therefore have confidence that the classification of the
papers and tools is fairly reliable because, according to the kappa
test, the agreement regarding the classification is almost perfect
among the three researchers.

http://www.code.google.com/p/cameldesigntool/
http://www.code.google.com/p/cameldesigntool/
http://www.code.google.com/p/cameldesigntool/

Fig. 2. Content of primary studies: (a) a tool for an area, (b) several tools for an area,
and (c) several tools for several areas.

Fig. 1. Map by years.

Table 5
Inter-rater reliability analysis data and results.

Categories Subjects Raters Fleiss Kappa

Tools 13 132 3 0.952
Papers 13 95 3 0.966

668 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
3. Results and discussion

In this section we present the results obtained from the system-
atic review of GSE tools. Having established that there was a need
for such a review and that no other review had been published in
this area, we proceeded to conduct the mapping study.

Fig. 2 shows that 44% of the 66 primary studies present a single
tool for a specific area (a), 46% present a set of tools for a single area
(b) and 10% present a set of tools for different areas (c). These re-
sults indicate that only a minority of papers deal with a set of tools
covering the complete software lifecycle; only 10% present a set of
tools for different areas that relate directly to software lifecycle
processes as defined in the SWEBOK [25] and briefly explained in
Section 3.1.

One of our goals after performing the systematic mapping re-
view was to identify which software tools are used/available in
the context of GSE, according to the literature studied.

Once we had studied each tool, we realized that the features in-
cluded in them could be categorized. These feature categories are
part of the expected results and are presented in the following
subsection.
3.1. Classification of features

With regard to the second expected result, to identify the main
features that GSE tools often include, we identified seven feature
groups. The main features of the tools studied are summarized in
Table 14, but we shall first describe each category as follows.

The first category is Subject. In this case, we have attempted to
classify each tool into a related subject. For example, if a tool is de-
scribed as a UML modeler, it will be classified in the design subject.
This classification was carried out by considering the use of differ-
ent classification frames. One of these was that presented in [26],
in which the author proposes a well-structured classification
framework for CASE tools. However, as we needed a process-
oriented classification to check the processes covered by the tools

Table 6
SWEBOK subjects.

SWEBOK subjects Abbreviation

Software Requirement Tools SRT
Software Design Tools SDT
Software Construction Tools SCT
Software Testing Tools STT
Software Maintenance Tools SMT
Software Configuration Management Tools SCMT
Software Engineering Management Tools SEMT
Software Engineering Process Tools SEPT
Software Quality Tools SQT
Miscellaneous Tool Issues MTI

Extended subjects
Knowledge Management Tools KMT
Virtual Meeting Tools VMT
Socio-Cultural Tools S-CT

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 669
[26], the classification was more oriented towards the type of tool
(IDE, Framework, etc.). That being so, we eventually came to the
conclusion that it was better to use the Areas of the Software
Engineering Body of Knowledge (SWEBOK) [25], which is more ori-
ented towards software engineering processes. We have therefore
specifically used the subjects defined in SWEBOK for the Software
Engineering Tools and Methods knowledge area. Moreover, we
have extended the subjects included in SWEBOK with other sub-
jects not included in software engineering. For example, the sub-
jects of Knowledge Management Tools and Virtual Meeting Tools
have been added. The latter has been included because virtual
meetings are an important means of communication in GSE. We
have also included the subject of Socio-Cultural Tools, since in
GSE, socio-cultural aspects influence project performance and
knowledge management [27]. The values used to classify a tool
into a knowledge area are shown in Table 6.

The type of tool that can be included in some of these knowl-
edge areas is often sufficiently clear, but in some cases, such as
the Miscellaneous subject, it is not clear which kind of tool can be
included. In order to understand what kind of tool can be included
in certain knowledge areas, we considered the following points
[25]:

� The SRT subject includes Requirements Modeling Tools (for
eliciting, analyzing, specifying, and validating requirements)
and Requirement Traceability Tools.

� The SDT subject includes tools for creating and checking
software designs.

� The SCT subject includes Program Editors, Compilers and
Code Generators, Interpreters and Debuggers.

� The STT subject includes Test Generators, Test Execution
Frameworks, Test Evaluation Tools, Test Management Tools
and Performance Analysis Tools.

� The SMT subject includes Comprehension Tools (for instance,
visualization tools such as animators and program slicers)
and Reengineering Tools.

� The SCMT subject includes Defect, Enhancement, Issue, and
Problem-Tracking Tools, Version Management Tools and
Release and Build Tools.

� The SEMT subject includes Project Planning and Tracking,
Risk Management and Measurement Tools.

� The SEPT subject includes Process Modeling Tools, Process
Management Tools, Integrated CASE environments and Pro-
cess-centered Software Engineering Environments.

� The SQT subject includes Review and Audit and Static Analy-
sis Tools. It also includes Inspection Tools, which in this case
are considered to be special kinds of review and document
management tools that help to increment the quality of
product documentation.
� The MTI subject principally includes Meta-tools or Integra-
tion Tools, that is, tools that integrate several tools in order
to construct a more complex one.

� The KMT subject (not included in SWEBOK), includes tools
that support the knowledge lifecycle processes, such as
the creation or distribution of knowledge (for instance a
WIKI tool).

� The VMT subject (not included in SWEBOK), includes tools
which principally permit communication among distributed
teams. Examples of these are videoconference tools, virtual
room tools, etc.

� The S-CT subject (not included in SWEBOK), includes tools
related to offering support to socio-cultural aspects through,
for instance, social networks, and an analysis of them.

As regards the subjects presented, Table 7 shows the areas on
which the primary studies are focused, that is, which particular
areas are supported by the tools presented in each primary study.
In some cases (the most complete pieces of work) the studies are
related to several areas, because they present different types of
tools. As Table 7 shows, tools to support software construction,
software engineering management (project management, issue
tracking, etc.), knowledge management and virtual meetings are
those most frequently mentioned in the selected studies.

On the other hand, subjects such as Software Maintenance Tools
(SMTs), Software Engineering Process Tools (SEPTs), Miscellaneous
Tool Issues (MTIs) and Socio-Cultural Tools (S-CTs) are not well
supported or researched.

The second category, License, is used to define which kind of li-
cense is associated with each tool. We have thus defined three
types of categories in relation to their licenses. These types are de-
scribed in Table 8.

Upon observing Fig. 3, we can see that 43.6% of the tools studied
are research tools (the highest group). The explanation for this is
probably that the works reviewed are mainly from research. These
tools are seldom used; they are, however, quite useful for allowing
companies to learn which features are used in GSE research tools,
in order to include them in commercial tools. Moreover, one goal of
this review was to obtain the maximum number of tools and to at-
tain a list of them that was as comprehensive as possible.

33.5% of the tools studied are free tools (Fig. 3). We consider
that this group of tools may be especially useful in the research do-
main because researchers can experiment without having to pay
for a license. Finally, 22.9% of the tools studied are commercial
tools.

Moreover, as is shown in Fig. 4, the group of free tools provides
better support in areas related to coding, such as those of construc-
tion (SCT), testing (STT) or configuration management (SCMT) (see
Table 6 for subject abbreviations). On the other hand the research
tools listed in Fig. 5 offer support in areas such as software design
or software quality, for which there are no free tools.

With regard to commercial tools, Fig. 6 shows that there is a
lack of tools in the areas of Software Engineering Process Tools
(SEPTs), Software Quality Tools (SQTs), Software Testing Tools (STTs)
and Software Construction Tools (SCTs). That being so, there is an
opportunity for organizations to develop tools in these areas.

The third category is Communication. This category includes
features that allow a team member to communicate with other
distributed team members. We therefore differentiated between
synchronous communication features, such as chat, videoconfer-
ence or VoIP, and asynchronous communication features, such as
e-mail. Table 9 shows the different communication types
considered.

With regard to the type of communication used in each tool,
and taking into account those which included any communication
channel (54%), the majority of the tools studied enable asynchro-

Table 8
Tool licenses.

License
type

Abbreviation Description

Commercial C This type of tool includes those whose license
can be obtained through payment

Free F This type of tool includes those whose license
can be obtained without payment. In this
license type we include licenses such as
Apache License, GPL, etc.

Research R This type of tool includes tools or prototypes
developed in (and by) research groups/labs

Table 7
Distribution of primary studies by subject.

Subject Primary studies %

Software Requirement Tools (SRTs) 15, 54, 55, 63, 64 5.2
Software Design Tools (SDTs) 8, 14, 15, 21, 31, 36, 41, 66 8.4
Software Construction Tools (SCTs) 6, 9, 18, 29, 30, 36, 43, 50, 61, 63 10.5
Software Testing Tools (STTs) 4, 36, 56 3.1
Software Maintenance Tools (SMTs) – 0
Software Configuration Management Tools (SCMTs) 11, 12, 33, 36, 40, 43, 53, 57, 62 9.4
Software Engineering Management Tools (SEMTs) 1, 11, 13, 16, 18, 21, 25, 26, 27, 29, 35,36, 39, 40, 46, 64, 66 17.8
Software Engineering Process Tools (SEPTs) 7, 32, 24 3.1
Software Quality Tools (SQTs) 38, 43, 37 3.1
Miscellaneous Tool Issues (MTIs) 22, 40 2.1
Knowledge Management Tools (KMTs) 3, 44, 59, 42, 51, 34, 66, 58, 5, 28, 36, 2, 43, 45, 65 15.7
Virtual Meeting Tools (VMTs) 61, 23, 48, 9, 17, 36, 47, 49, 10, 58, 38, 14 12.6
Socio-Cultural Tools (S-CTs) 57, 20, 18, 52, 54, 24, 19, 60 8.4

Table 9
Communication features.

Communication
type

Abbreviation Description

Synchronous V Video-conference
Synchronous C Chat
Synchronous A Audio-conference (include VoIP or

similar)
Asynchronous F Forum or discussion thread
Asynchronous E E-mail
Asynchronous Cmts Comments (usually related to system

items)

Fig. 7. Communication channel distribution.

Fig. 3. Tool distribution by license.

Fig. 4. Number of free tools supporting each area.

Fig. 5. Number of research tools supporting each area.

Fig. 6. Number of commercial tools supporting each area.

670 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
nous communication (29.7%) (see Fig. 7). This would appear to be
logical, since time differences commonly occur in globally
distributed environments, making the constant use of synchronous
communication difficult.
The fourth category is Awareness. With this category we have
attempted to describe those features related to awareness manage-
ment. We have therefore classified the awareness features into two
groups, the first of which is Presence Awareness. This type is mainly
related to showing who is connected to a session, or where a team
member is located. Presence awareness can thus be considered as
Session Awareness or Global Awareness, respectively. Global Aware-
ness consists of showing where other team members are located
geographically.

Table 13
Socio-cultural features.

Table 12
Knowledge management features.

Feature Value

Wiki W
Document Management System DMS
Blog B

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 671
In this category we also consider another type of awareness, de-
fined as Change Awareness. This type of awareness considers those
features related to letting users know ‘‘who is doing what’’, inde-
pendently of whether team members are working synchronously
or asynchronously. We have identified two main features to sup-
port this (Table 10 describes the features related to awareness):

� Visual features: These include features that help users to be
aware of the actions performed by other users, mainly in a
synchronous context, for instance, color identification.

� E-Mail Notifications: This feature is that which is most
widely-used in an asynchronous context to make users
aware of the actions performed by other users.

The fifth category is that of Control and Coordination. This cat-
egory includes features that principally assist managers with con-
trol and coordination issues. For instance, in geographically
dispersed teams it is important, when controlling the progress of
tasks or activities, to track different issues such as bugs or tasks,
and to do so through the use of software tools. In this particular
case, these tools are called Issue Tracking Systems. This kind of sys-
tems also assists in aspects of coordination, since managers have
an overview of the project’s progress and are able to make coordi-
nation adjustments. In addition, these kinds of systems are com-
plemented with Version Control Systems or Build Management
Systems, which offer more control and coordination information.
Note that these tools can be considered as independent tools or
as features when they are integrated into other more complex
tools. In order to classify these control and coordination aspects,
we have detected three main types of tools, which are presented
in the following table (Table 11).

The sixth category is that of Knowledge Management. Here we
indicate whether the tool supports knowledge acquisition, knowl-
edge sharing, knowledge distribution, etc. After reviewing the tools
found, we have observed that these features are mainly supported
by Wikis, Document Management Systems and Blogs. The main
advantage of using these kinds of tools is that most of them are
Web-based, which allows knowledge to be managed in distributed
environments. Three kinds of features are therefore considered,
and these are summarized in the following table (Table 12).

The seventh and last category is the Socio-Cultural category. In
this category, the features included are intended to help users to
reduce socio-cultural distance. Examples of this are social net-
works. These social networks may include information that can
be social, cultural or concerns language, and so on. Team members
can consult this information to obtain a better awareness of, for
example, other team members’ cultural customs. We have, in gen-
Table 10
Awareness features.

Awareness type Abbreviation Description

Presence G Global Awareness
Presence S Session Awareness
Changes V Visual Awareness
Changes EN E-mail Notifications

Table 11
Control and coordination features.

Type of tool Abbreviation

Issue Tracking System ITS
Version Control System VCS
Build Management System BMS
eral, identified three kinds of features/tools included in the tools
found, which are summarized in the following table (Table 13).

84.8% of the tools studied do not include features that support
socio-cultural aspects (see Fig. 8). Moreover, of the total number
of tools that include socio-cultural features (15.2%), only some of
them include a simple profile manager. The most comprehensive
tools in this aspect include social network support.
3.2. Tool classification and description

With regard to the third goal of this literature review, defined as
classifying the available software tools into groups depending on
their features and/or the areas in which they are used, Table 14
shows a description of the tools studied, indicating which features
each tool includes.

In order to complete the table, we have assumed that a tool in-
cludes a feature if it is part of the tool or if it can be included in the
tool through the integration of another simpler tool. A typical case
of this is when tools have an Issue Tracking System (ITS) through
the integration of an Issue Tracking Tool such as Jira. However, this
does not mean that all the possibilities of integration have been
checked. Only the most obvious and easy-to-find integration possi-
bilities have been considered.

As was previously mentioned, the information regarding the
132 tools included in the table has been extracted from the
primary studies (which are identified in the table in the PS column)
and the tools’ websites. This implies that the information provided
in the table is limited in this respect. However, more features could
probably be discovered by actually installing the tools.

If the table above is to be understood correctly, then the infor-
mation shown must be read as follows. Imagine that you need to
use a set of tools in your company or research lab to, for instance,
support distributed communication (VMT). Bearing this require-
Fig. 8. Distribution by socio-cultural features.

Feature Value

Profile P
Social Network SN
Social Dependency Net SDN

672 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
ment in mind, the table can be used to select those tools related to
VMT at a glance.

If you know which tools are available for this process, you can
compare the most comprehensive ones by observing which fea-
tures are included in each one. For example, for VMT, you could se-
lect Webex, TeamSpace and Yahoo Messenger as possible options,
since they support the majority of the features presented in the ta-
ble (i.e., they support audio, video and chat communication – val-
ues A, V, C in the table in the communication feature). Moreover,
the tool shows when users start a new session, and/or it also dis-
plays which users are working on the same session (value S in
the presence awareness feature), in addition to the awareness
information when there are changes in the tool or when the ses-
sion is presented visually (value V in the change awareness
feature).

At this point, the features offered by these tools are similar,
depending on the particular needs or the company or lab policy.
However, the license can also be taken into account. If a research
lab wishes to experiment, it may be advisable to select a research
tool (TeamSpace in this case) or a free tool (Yahoo Messenger). One
critical process in the context of a distributed development is the
Project Management Process. By using this table, a company can
select the most desirable tools to support this process (SEMT in
Table 14) and reduce the problems related to distribution. Thus,
by following the process explained in the previous example, it is
possible to select the most comprehensive tools presented in the
table, taking into account the type of license. In the case of Project
Management, it is important to use tools which include features
supporting control and coordination. With that in mind, a person
can select from the table those tools related to Project Manage-
ment (SEMT) which include the maximum number of coordination
and control features. This person could therefore select ActiveCol-
lab, Assembla or Rational Team Concert, because they appear to be
the most comprehensive tools that include communication fea-
tures, such as Chat (C) or Forums (F). Moreover, they offer Version
Control Systems (VCSs), Build Management Systems (BMSs) and Is-
sue Tracking Systems (ITSs) as control and coordination mecha-
nisms and they also support knowledge management with the
use of wikis (W) and/or document management features (DM).

In GSD, socio-cultural aspects influence project performance. In
order to help reduce socio-cultural problems, Table 14 includes
information about which socio-cultural features are used in each
tool, along with information concerning which tools exist that
are directly related to socio-cultural aspects. As is shown in the
table, the most common features used are the inclusion of user
profiles (P) to provide details concerning personal information,
together with the incorporation of a social network (SN) in the tool.
Moreover, the majority of those tools directly related to socio-cul-
tural aspects focus mainly on studying social dependencies in
social networks (SDNs), such as Tesseract, CASOS or Ariadne.

3.2.1. Tools and features used in each knowledge area
With regard to the different knowledge areas in which the tools

have been classified, Table 14 can also be used to extract which
features are most frequently provided by the studied tools in each
area. The following paragraphs describe which features are com-
monly used by the studied tools in each knowledge area. Moreover,
the lists of tools that can be used in each area are also provided.

3.2.1.1. Requirement Tools (SRTs). In this case, the most frequently
provided feature is the Issue Tracking System, which makes users
aware of important issues or changes. This feature is usually com-
plemented with visual awareness techniques (value V in the
Changes Awareness column), such as highlighting important as-
pects in different colors and the possibility of inserting comments
(Cmt in the table). Moreover, the most complete tools, such as Ra-
tional Requisite Pro, also include a document manager (DM) with
which to attach important requirement documents. The list of
Requirement Tools is therefore the following: ARENA, DOORS,
EGRET, eRequirements, GatherSpace, Rational Requisite Pro and
Rational Requirement Composer.

3.2.1.2. Design Tools (SDTs). The feature most frequently provided
in design tools is Awareness. Bearing in mind that most of these
tools have been designed to be used synchronously (but distrib-
uted in this case), the majority of the tools use both visual aware-
ness (V) and session awareness (S in the table). By combining these
types of awareness, the tools are able to show each user who is
editing what, or who is working on the session. Moreover, these
kinds of tools usually allow comments to be written by the users.
The most comprehensive tools, such as Together, also include an
Issue Tracking System and a Version Control System. The list of De-
sign Tools is: Artisan Studio, CAB, CAMEL, CoDesign, Creately, Glif-
fy, GroupUML, Libra-on-Chat, Rational Software Modeler, STEVE,
Sysiphus and Together.

3.2.1.3. Construction Tools (SCTs). In the case of the construction
tools, something similar to the Design Tools occurs, the most fre-
quently provided feature being the awareness feature (session
and changes awareness). However, the construction tools also usu-
ally include an Issue Tracking System (ITS) and a Version Control
System (VCS), with the latter being used more frequently. The most
complete tools, i.e., CollabVS, also include different channels of
communication, such as audio and video communication. An
important aspect with regard to construction tools is that some
of them (GitHub, Google Code, SCI and Share) include a feature that
is not usually included in any other tool shown in the table. This
feature is the Social Network (SN in the table), which allows users
to include information about which programming languages or
development environment they specialize in, the projects on which
they have worked, and contact information. The list of construction
tools is: byteMyCode, CheckStyle, CollabVS, Copper, GForge, Git-
Hub, Google Code, ICI, Moomba, SCI, Share, Syde, TagSEA and
TUKAN.

3.2.1.4. Testing Tools (STTs). This group of tools does not include
special features. The main feature is to allow the remote execution
of tests. Some of these also include an Issue Tracking System such
as OpenSTA, a Version Control System such as TestLink and Build
Management System such as SoftFab. The list of testing tools is,
therefore: HttpUnit, JWebUnit, OpenSTA, Selenium, SoftFab, Test-
Link, Watir and WebTest.

3.2.1.5. Maintenance Tools (SMTs). No maintenance tools were
found by our study.

3.2.1.6. Configuration Management Tools (SCMTs). The main features
of this group of tools are the Version Control System and the Issue
Tracking System. They also include visual awareness mechanisms
to inform of changes. One important innovation is that presented
in WikiDev 2.0 which implements this kind of systems as a Wiki,
is accessible from any Web browser and is very useful in a
highly-distributed environment, owing to this very availability.
The list of configuration management tools is: CASI, Darcs, Git,
Mercurial, MUDABlue, Palantir, Perforce, Rational Clearcase, SCAR-
AB, Subversion, TortoiseSVN and WikiDev.

3.2.1.7. Engineering Management Tools (SEMTs). Although this group
of tools includes Project Planning and Tracking, Risk Management
and Measurement Tools, the majority of them are related to Project
Planning and Tracking, and the features mentioned here are there-
fore mainly related to this type of tools. The main feature that this

Table 14
Tool classification and description.

PS Area License Communication Awareness Control &
Coordination

KM S-C

Sync Async Presence Changes

4EverEdit 44 KMT R – Cmt – V VCS, ITS DMS –
ActiveCollab http://www.activecollab.com/ 36 SEMT C – F S EN ITS, VCS DMS P
ADAMS 16 SEMT R – – – EN VCS, ITS – –
ADDSS 58 KMT R – – – – – DMS –
AISA 38 SQT R – Cmt – – – DMS –
ARENA 54 SRT R – Cmt – – ITS – –
Ariadne 60 S-CT R – – – V SDN
Artisan Studio http://www.artisansoftwaretools.com/products/

artisan-studio
36 SDT C – – – – – DMS –

Assembla http://www.assembla.com/ 18 SEMT C C F – EN ITS, VCS,
BMS

W P

Augur 26 SEMT R – – – V – – –
BSCW http://public.bscw.de/ 42 KMT F – Cmt – EN, V VCS B –
Bugzilla http://www.bugzilla.org/ 36 SEMT F – – – – ITS – –
byteMyCode http://www.bytemycode.com/ 63 SCT F – Cmt – – – B P
CAB 31 SDT R – Cmt S V VCS – –
CAMEL http://code.google.com/p/cameldesigntool/ 20 SDT R C – S V – – –
CASI 53 SCMT R – – – V – – –
CASOS 19 SC-T R – – – V – – SDN
CAWS 42 KMT R – – S V – DMS,

W, B
–

CheckStyle http://checkstyle.sourceforge.net/ 43 SCT F – – – – – – –
Citrix GoToMetting https://www2.gotomeeting.com/ 59 VMT C C, A – S V – – –
CoDesign 8 SDT R – Cmt S V – – –
CollabDev 51 KMT R – – – – VCS W,

DMS
–

CollabVS 52 SCT C C, V, A Cmt S V ITS – –
ConnectNow https://www.adobe.com/acom/connectnow/ 23 VMT C C, V, A Cmt S V – DMS –
Consensus@nyWARE 48 VMT R – Cmt – V ITS – –
COPPER 29 SCT R C – S V – DMS –
CodeBeamer http://www.intland.com/products/cb/overview.html 13 SEMT C – F – EN ITS, VCS,

BMS
W,
DMS

–

Creately http://creately.com/ 36 SDT C – Cmt – – VCS W –
CruiseControl http://cruisecontrol.sourceforge.net/ 36 SEMT F C – – – BMS – –
CVE http://cve.sourceforge.net/ 9 VMT F C, A – – – – – –
Darcs http://darcs.net/ 36 SCMT F – – – – VCS – –
DOCTOR 34 KMT C – Cmt – EN ITS, VCS DMS –
DOORS http://www01.ibm.com/software/awdtools/doors/ 15 SRT C – Cmt – – ITS – –
DrProject https://www.drproject.org/ 11 SEMT F – Cmt – EN, V VCS. ITS DMS –
eConference 17 VMT R C – S V – – –
EGRET 55 SRT R – F – V ITS – –
eRequirements http://www.erequirements.com/app 64 SRT F – Cmt – V ITS DMS –
FASTDash 12 SCMT R – Cmt S V ITS – –
‘‘Fonseca Tool’’ 25 SEMT R – – – EN – – SN
FriendFeed http://friendfeed.com/ 18 S-CT F – – – – – – SN
Galaxy Wiki 65 KMT R – F – – ITS W,

DMS,
B

–

GatherSpace http://www.gatherspace.com/index.html 64 SRT C – Cmt – V ITS, VCS DMS –
GENESIS http://www.genesisist.org/english/default.htm 7 SEPT F C F – EN – – –
GForge http://gforge.org/gf/ 36 SCT F – F – EN ITS, VCS,

BMS
DMS –

Git http://git-scm.com/ 36 SCMT F – – – – VCS – –
Github http://github.com/ 18 SCT F – Cmt – – ITS, VCS,

BMS
B SN

Gliffy http://www.gliffy.com/ 36 SDT C – – – – ITS, VCS W,
DMS

–

Google Code http://code.google.com 18 SCT F – – – – ITS, VCS,
BMS

DMS,
W, B

SN

Google Docs docs.google.com 45 KMT F C Cmt – V VCS B –
Google Groups http://groups.google.com 57 KMT F – F – EN VCS – –
Google Wave http://wave.google.com/ 36 VMT F C F – – – DMS P
GroupUML 14 SDT R C – S V – – –
Hobbes 32 SEPT R – Cmt S V VCS DMS –
HP Quality Center https://h10078.www1.hp.com/cda/hpms/display/

main/hpms_content.jsp?zn=bto&cp=1-11-127-24_4000_100__
43 SQT C – – – – – – –

HttpUnit http://httpunit.sourceforge.net/ 4 STT F – – – – – – –
Hypercode 15 SQT R – Cmt – EN – – –
IBIS 37 SQT R – Cmt S EN – – –
iBistro 5 KMT R C, V, A Cmt S V VCS DMS –
ICI 9 SCT R C, A – – V – – –
IssuePlayer 27 SEMT R – – S V – – –

(continued on next page)

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 673

http://www.activecollab.com/
http://www.artisansoftwaretools.com/products/artisan-studio
http://www.artisansoftwaretools.com/products/artisan-studio
http://www.assembla.com/
http://www.public.bscw.de/
http://www.bugzilla.org/
http://www.bytemycode.com/
http://www.code.google.com/p/cameldesigntool/
http://www.checkstyle.sourceforge.net/
http://www.2.gotomeeting.com/
http://www.adobe.com/acom/connectnow/
http://www.intland.com/products/cb/overview.html
http://www.creately.com/
http://www.cruisecontrol.sourceforge.net/
http://www.cve.sourceforge.net/
http://www.darcs.net/
http://www.01.ibm.com/software/awdtools/doors/
http://www.drproject.org/
http://www.erequirements.com/app
http://www.friendfeed.com/
http://www.gatherspace.com/index.html
http://www.genesisist.org/english/default.htm
http://www.gforge.org/gf/
http://www.git-scm.com/
http://www.github.com/
http://www.gliffy.com/
http://www.code.google.com
http://www.groups.google.com
http://www.wave.google.com/
https://www.h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24_4000_100__
https://www.h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24_4000_100__
http://www.httpunit.sourceforge.net/

Table 14 (continued)

PS Area License Communication Awareness Control &
Coordination

KM S-C

Sync Async Presence Changes

Jira http://www.atlassian.com/software/jira/ 36 SEMT F – Cmt – EN VCS, ITS – –
JWebUnit http://jwebunit.sourceforge.net/ 4 STT F – – – – – – –
KNOWFACT 28 KMT R – – – – – – –
KnowledgeTree http://www.knowledgetree.com/ 36 KMT C – F – EN VCS DMS –
Libra-on-chat 66 SDT R C Cmt S V – – –
LiveNet ⁄http://linus.socs.uts.edu.au/~igorh/workspace/explore/

livenet.htm
2 KMT F C F S – – – –

Lotus Sametime http://www01.ibm.com/software/lotus/sametime/ 47 VMT C C, V, A – S, G – – DMS –
Lotus Quickr http://www01.ibm.com/software/lotus/products/

quickr/
28 KMT C – – – – – DMS –

Mantis http://www.mantisbt.org/ 40 SEMT F – – – – ITS – –
MasePlanner 46 SEMT R – Cmt – – – – –
Maven http://maven.apache.org/ 36 SEMT F – – – – ITS, VCS,

BMS
DMS –

Mercurial http://mercurial.selenic.com/ 36 SCMT F – – – – VCS – –
Merlin Toolchain http://merlintoolchain.sourceforge.net/index.html 22 MTI F – – – – ITS, VCS,

BMS
– –

Microsoft Office Communicator http://office.microsoft.com/es-es/
help/HA102037153082.aspx

47 VMT C C, V, A – S – – DMS –

Microsoft Sharepoint http://sharepoint2010.microsoft.com/Pages/
default.aspx

43 KMT C – F, Cmt – – – W, B,
DMS

–

MILOS ASE 29 SEMT R C, V, A – S V ITS – –
Miramar 2.0 49 VMT R C Cmt S V, G – – –
MoinMoin http://moinmo.in/ 57 KMT F – F – EN ITS, VCS W –
Moomba 29 SCT R C, V, A – S V – – P
MPK20 https://lg3dwonderland.dev.java.net/ 10 VMT F C, A – S – – – –
MSN Messenger messenger.live.com 57 VMT F C, V, A – S V – – P
MUDABlue 33 SCMT R – – – V VCS, ITS – –
MULTIMIND 28 KMT R – – – – – – –
OpenSTA http://opensta.org/ 36 STT F – – – – ITS – –
P2PConference 38 VMT R C – S – – – –
PAKME 3 KMT R – – – – – DMS –
Palantír 62 SCMT R – – – V – – –
pcAnywhere http://www.symantec.com/business/pcanywhere 59 VMT C C – S V – – –
Perforce http://www.perforce.com/ 40 SCMT C – – – – VCS, ITS – –
Rational Clearcase http://www01.ibm.com/software/awdtools/

clearcase/
43 SCMT C – – – – VCS, BMS – –

Rational Requirements Composer https://jazz.net/projects/rational-
requirements-composer/

63 SRT C – Cmt – V ITS – –

Rational Requisite Pro http://www01.ibm.com/software/awdtools/
reqpro/

15 SRT C – Cmt – EN ITS DMS –

Rational Software Modeler http://www–01.ibm.com/software/
awdtools/modeler/swmodeler/

36 SDT C – – – – ITS – –

Rational Team Concert https://jazz.net/projects/rational-team-
concert/

63 SEMT C C – S V ITS, VCS,
BMS

– –

RepoGuard 40 MTI R – – – – ITS, VCS,
BMS

– –

Saperion ECM http://www.saperion.com/en/products/enterprise-
content-management.html

43 KMT C – – – – – DMS –

Saros http://www.saros-project.org/ 50 SCT F C Cmt S V – DMS –
SCARAB http://scarab.tigris.org/ 57 SCMT F – – – – ITS – –
SCI 9 SCT R C, A – S V – – SN
Selenium http://seleniumhq.org/ 36 STT F – – – – – – –
Share 6 SCT R – Cmt S V VCS DMS SN
SoftFab 56 STT R – – – – BMS – –
SPEARMINT 24 SEPT R – – – – – DMS –
STEVE 21 SDT R – – – V ITS, VCS – –
Subversion http://subversion.tigris.org/ 36 SCMT F – – – – VCS – –
Syde 30 SCT R – – – V ITS, VCS – –
Sysiphus http://sysiphus.in.tum.de 15 SDT R – Cmt – EN – W,

DMS
P

TagSEA http://tagsea.sourceforge.net/ 61 SCT F – Cmt – – – – –
TAMRI 35 SEMT R – – – – – – –
TeamSpace http://www.research.ibm.com/teamspace/index.html 14 VMT R C, V, A – S V ITS DMS –
Tesseract 52 S-CT R – – – V ITS – SDN
TestLink http://blog.testlink.org/ 36 STT F – – – – VCS – –
Together http://www.borland.com/us/products/together/index.html 41 SDT C – Cmt S V VCS, ITS DMS –
TortoiseSVN http://tortoisesvn.tigris.org/ 57 SCMT F – Cmt – – ITS, VCS – –
Trac http://trac.edgewall.org/ 65 SEMT F – – – – ITS DMS,

W
–

TUKAN http://www.darmstadt.gmd.de/concert 29 SCT R C, A – S – ITS, VCS – –
TWiki http://twiki.org/ 65 KMT F – F – – ITS, VCS DMS,

W
–

674 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685

http://www.atlassian.com/software/jira/
http://www.jwebunit.sourceforge.net/
http://www.knowledgetree.com/
http://www.linus.socs.uts.edu.au/~igorh/workspace/explore/livenet.htm
http://www.linus.socs.uts.edu.au/~igorh/workspace/explore/livenet.htm
http://www01.ibm.com/software/lotus/sametime/
http://www.01.ibm.com/software/lotus/products/quickr/
http://www.01.ibm.com/software/lotus/products/quickr/
http://www.mantisbt.org/
http://www.maven.apache.org/
http://www.mercurial.selenic.com/
http://www.merlintoolchain.sourceforge.net/index.html
http://www.office.microsoft.com/es-es/help/HA102037153082.aspx
http://www.office.microsoft.com/es-es/help/HA102037153082.aspx
http://www.sharepoint2010.microsoft.com/Pages/default.aspx
http://www.sharepoint2010.microsoft.com/Pages/default.aspx
http://www.moinmo.in/
http://www.lg3dwonderland.dev.java.net/
http://www.opensta.org/
http://www.symantec.com/business/pcanywhere
http://www.perforce.com/
http://www.01.ibm.com/software/awdtools/clearcase/
http://www.01.ibm.com/software/awdtools/clearcase/
http://www.jazz.net/projects/rational-requirements-composer/
http://www.jazz.net/projects/rational-requirements-composer/
http://www.01.ibm.com/software/awdtools/reqpro/
http://www.01.ibm.com/software/awdtools/reqpro/
http://www.-01.ibm.com/software/awdtools/modeler/swmodeler/
http://www.-01.ibm.com/software/awdtools/modeler/swmodeler/
http://www.jazz.net/projects/rational-team-concert/
http://www.jazz.net/projects/rational-team-concert/
http://www.saperion.com/en/products/enterprise-content-management.html
http://www.saperion.com/en/products/enterprise-content-management.html
http://www.saros-project.org/
http://www.scarab.tigris.org/
http://www.seleniumhq.org/
http://www.subversion.tigris.org/
http://www.sysiphus.in.tum.de
http://www.tagsea.sourceforge.net/
http://www.research.ibm.com/teamspace/index.html
http://www.blog.testlink.org/
http://www.borland.com/us/products/together/index.html
http://www.tortoisesvn.tigris.org/
http://www.trac.edgewall.org/
http://www.darmstadt.gmd.de/concert
http://www.twiki.org/

Table 14 (continued)

PS Area License Communication Awareness Control &
Coordination

KM S-C

Sync Async Presence Changes

Twitter http://twitter.com/ 23 S-CT F – Cmt V, EN – – SN
Watir http://watir.com/ 4 STT F – – – – – – –
WebEx http://www.webex.com/ 36 VMT C C, A, V – S V – DMS –
WebTest http://webtest.canoo.com/webtest/manual/

WebTestHome.html
4 STT F – – – – – – –

WikiDev 2.0 11 SCMT R – Cmt S V VCS. ITS W P
WiP 38 SQT R – – – – – DMS –
WiT 38 SQT R – Cmt – – – DMS –
Workspace 3D http://www.tixeo.com/en/hosted-video-conferencing/

WorkSpace3D-SE.htm
36 VMT C C, A, V – S V – DMS –

Workspace Activity Viewer http://www.cse.unl.edu/~asarma/
research.html

1 SEMT R – – – V – – –

WorldView http://www.cse.unl.edu/~asarma/research.html 1 SEMT R – – G – – – P
XATI 38 SQT R – – – – – DMS –
XCHIPS 24 SEPT R C, V – – – – – –
Xerox Docushare http://docushare.xerox.com/ 43 KMT C – – – – VCS DMS –
XPlanner http://www.xplanner.org/ 39 SEMT F – Cmt – – ITS W –
Yahoo Messenger http://messenger.yahoo.com/ 57 VMT F C, V, A – S V – – P

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 675
kind of tools should include is Awareness. The majority of them of-
fer features such as email notifications in order to inform users
about what is happening in the project. Moreover, Issue Tracking
and Version Control Systems are commonly used for Project Track-
ing. Other features that make the tools more complete and which
are included in tools such as ActiveCollab, Assembla, Milos ASE
or Rational Team Concert, are document managers, chat tools, for-
ums or wikis. The list of Engineering Management Tools is thus:
ActiveCollab, ADAMS, Assembla, Augur, Bugzilla, CodeBeamer,
Cruise Control, DrProject, ‘‘Fonseca Tool’’, IssuePlayer, Jira, Mantis,
MasePlanner, Maven, MILOS ASE, Rational Team Concert, TAMRI,
Trac, WorkSpace Activity, WorldView and XPlanner.

3.2.1.8. Engineering Process Tools (SEPTs). This group of tools makes
use of similar features to those in the design tools, since some of
the Engineering Process Tools are modeling tools that use the same
features. These features are usually awareness features (visual and
session awareness) and also chat features for writing comments.
The list of tools is: GENESIS, Hobbes, SPEARMINT and XCHIPS.

3.2.1.9. Quality Tools (SQTs). As the number of tools found in this to-
pic is small, it is risky to draw conclusions. However, we can state
that the main features are the document manager and the possibil-
ity of writing comments. Some of the awareness features such as
email notifications are also used. The list of SQT is: AISA, HP Quality
Center, HyperCode, IBIS, WiT, WiP and XATI.

3.2.1.10. Miscellaneous Tool Issues (MTIs). This group includes Meta-
tools or Integration Tools but only a couple of them are on the list.
These two tools have the common feature that they are able to
integrate different ITS, VCS and BMS features to be used as a single
tool. However, the integration possibilities are very limited. The
specific tools are MerlinToolChain and RepoGuard.

3.2.1.11. Knowledge Management Tools (KMTs). The importance of
documents in which knowledge can be written and shared signifies
that the main feature included in most of the tools in this group is
the document manager. This feature is also complemented by a
Version Control System to control the document versions and keep
the users updated. Moreover, owing to the extended use of Web
applications, other very commonly used features are the Wikis,
Forums and Blogs. The list of knowledge management tools is:
4everedit, ADDSS, BSCW, CAWS, CollabDev, DOCTOR, GalaxiWiki,
Google Docs, Google Groups, iBistro, Knowfact, Knowledge Tree,
LiveNet, Lotus Quickr, MS Sharepoint, MoinMoin, MULTIMIND,
PAKME, Saperion, ECM, TWiki and Xerox Docushare.

3.2.1.12. Virtual Meeting Tools (VMTs). The majority of these tools
enable virtual meetings through the use of a chat tool. Moreover,
they also usually include video and audio chat combined with
awareness features, in order to know who is connected or to ascer-
tain the state of each user (available, not available, disconnected,
etc.). The most comprehensive tools also include a document man-
ager to allow documents to be shared and edited in a virtual meet-
ing. The list of VMT is: Connect Now, Consensus@nywhere, CVE,
eConference, Google Wave, Lotus Sametime, MS Office Communi-
cator, Miramar 2.0, MPK 2.0, MSN Messenger, P2P Conference, pcA-
nywhere, TeamSpace, WebEx, WorkSpace 3D, Yahoo Messenger.

3.2.1.13. Socio-Cultural Tools (S-CTs). These tools are directly related
to social networks and their analysis. Two main features are there-
fore used in this kind of tools. The first is the use of social network
analysis to obtain social dependency networks (SDN in the table).
The use of these networks makes it possible to analyze how inter-
actions occur in a work team. This could, for example, help in the
making of decisions related to the group structure. The second fea-
ture is the management of a social network (SN in the table). This
feature is included in well-known tools such as Twitter and is com-
monly used to keep people close to each other, by sharing personal
information. The list of S-CT is: Ariadne, CASOS, Friendfeed, Tesser-
act and Twitter.

3.2.2. Common groups of features provided by the studied tools
This review has also allowed us to identify groups of features

commonly used by the tools included in this study. To extract
these groups we reviewed the Collaboration Features column of
the extraction form (Table 4). We specifically extracted the follow-
ing groups of features:

Awareness: We identified that several types of awareness fea-
tures are usually provided by the studied tools. For instance, in
[28], WorldView and WAV are presented as tools that are able to
identify the team structure. Another tool that attempts to improve
awareness mechanisms is Augur, which includes a system to mon-
itor developer’s activities and explores the distribution of activities
in time and space in order to explore the history and context of
particular development activities in the code base [29].

Other tools attempt to address how to propagate any changes in
the entire distributed team. For instance, FASTDASH, Palantir or

http://www.twitter.com/
http://www.watir.com/
http://www.webex.com/
http://www.webtest.canoo.com/webtest/manual/WebTestHome.html
http://www.webtest.canoo.com/webtest/manual/WebTestHome.html
http://www.tixeo.com/en/hosted-video-conferencing/WorkSpace3D-SE.htm
http://www.tixeo.com/en/hosted-video-conferencing/WorkSpace3D-SE.htm
http://www.cse.unl.edu/~asarma/research.html
http://www.cse.unl.edu/~asarma/research.html
http://www.cse.unl.edu/~asarma/research.html
http://www.docushare.xerox.com/
http://www.xplanner.org/
http://www.messenger.yahoo.com/

676 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
Syde, attempt to address this problem by providing real-time infor-
mation about ongoing changes and warning developers about
emerging conflicts [30]. More specifically, FASTDASH enables
information to be accessed as regards which code files are being
changed, who is changing them and how they are being used [31].

Change notification receivers should understand how these
changes will make an impact on their work. Moreover, it is some-
times relatively easy to ignore the work of others in decoupled dis-
tributed teams because teams typically focus on their own models
and ignore the dependent artifacts produced by others [32]. This
problem is considered by SYSIPHUS, which was designed and
implemented to enable teams to focus on overlaps between mod-
els at different sites [32]. In this respect, ADAMS also supports
event notifications by taking into account relevant events related
to the artifacts the engineer is working with [33].

Social Dependencies: Some of the studied tools integrate social
features into IDEs to help developers save the time involved in
switching between different tools and to enrich the collaborative
IDE with social activities. For instance, in [35], SCI is presented as
a solution to provide IDEs with ‘‘social presence’’ by including so-
cial awareness and communication in a collaborative development
environment. Other examples are FriendFeed, which is used in [34]
to integrate and disseminate personal information into develop-
ment environments.

Other tools associate social dependencies (‘‘dependency be-
tween developers as a result of the calls to each other’s code’’
[28]) with technical dependencies. One of the tools that the
authors of ([28,34]) have selected in order to extract social depen-
dencies from it, in this case, code files is Ariadne. This is a visual
collaborative tool that highlights the socio-technical relationships
between source-code artifacts and the developers implementing
those artifacts in, for example, a repository [28].

Informal Communication: The need for informal communication
and informal meetings has been taken into account by tools such
as iBistro, which were designed to support the efficient capture,
structure and navigation of meetings and their integration into
the project [36].

Some of the studied tools have communication channels incor-
porated into them. We thus mention, for example, CollabVS [37],
CAMEL [38], CruiseControl [16], GENESIS [39], GoogleDocs [40] or
GroupUML [41], which are not communication tools but which in-
clude a chat to communicate with the other members while using
the tool. This idea is mainly related to distributed design tools in
which synchronous sessions need to be supported by communica-
tion channels.

Knowledge Management: Architectural Knowledge (AK) Man-
agement (AKM) needs to be adapted to today’s distribution models
[42]. In [43] the authors state that PAKME can be successfully used
to help systematize the architecture knowledge management and
evaluate the process of an industrial collaborator. LiveNet tool, de-
spite not having been designed for AKM, is presented in [42] as
being particularly applicable to capturing and encouraging the
sharing of AK in distributed teams. To end this section, we should
state that the information shown in the table can be consulted in
the original papers from which the tools were extracted.

There are globally distributed companies such as IBM in which
wikis serve as a platform for informal knowledge sharing among
the collaborating teams [44]. There are also systems such as Col-
labDev that have been specifically developed for large projects
and large distribution of the team members. This allows specific
application knowledge to be acquired and makes the knowledge
available to the main stakeholders in order to solve maintenance
problems [45].

It is also important to make the tools compatible with com-
monly used formats or file types in order to facilitate their use
and the sharing of information or knowledge. For instance,
SharePoint and Quickr allow knowledge workers to directly share
information from Word, Excel and PowerPoint. They therefore sim-
plify the sharing process since they do not have to save the file
locally, and then transmit it via electronic mail or a Web-based
upload [46].

Web-based version: One of the ideas used by some of the tools
studied is that of implementing Web-based tools, thus allowing
users to access them from anywhere with a simple Web-browser.
Good examples of this are WebEx, which provides meeting services
from a Web-browser [47], or WEB-DAV, which is a Web-based dis-
tributed authoring and versioning system [46].

Wiki webs, such as WikiDev, are also a good example of Web-
based systems that allow, in this case, information to be shared.
WikiDev integrates information about various artifacts of interest,
and uses clustering to obtain relevant artifacts and presents them
in different views [48].

Data Integration: Software Development activities need to be
supported by a set of tools such as version control systems, bug
tracking systems, issue tracking systems, etc. The problem is that
all these tools usually ‘‘live in their own world’’, are only loosely
coupled and do not interact with each other [49]. Repoguard ad-
dresses this problem by linking version control systems to other
tools such as Mantis, Bugzilla and Trac.

This last analysis has allowed us to extract a set of the features
commonly used by the GSE tools presented in this study. One of
these features is that of awareness. This feature could help to keep
the team members informed about activities that are being per-
formed by other team members. Moreover, the awareness feature
should consider social aspects including, for instance, personal
information. Supporting informal communication is another of
the key features that should be included in a tool, since there is a
lack of informal information in distributed teams owing to the dif-
ficulty of having face-to-face meetings. Offering interoperability
among tools has been also detected as important in order to avoid
information and coordination breakdowns. Finally, allowing the
formal and informal knowledge generated by the team members
in a distributed environment to be managed has been also consid-
ered to be a desirable feature.

3.2.3. Tools’ evaluation
Efficient tool selection and evaluation processes are key issues

in software engineering if development efficiency is to be in-
creased [50]. It is therefore important to know whether the tools
studied have been evaluated in a distributed environment. In this
case, we have considered as valid evaluations those based on case
studies, experiments, scenario-based evaluations, users’ ratings
and, of course, real project-based evaluations.

Moreover, we have separated tools that have been internally
evaluated from those that have been externally evaluated. Here,
internally evaluated refers to those tools that have been evaluated
by the tool’s builder/researcher. Examples of internal evaluation
are presented in [28,51]. In [28] a tool called Ariadne is evaluated
by the design team who perform an evaluation of Ariadne’s visual-
ization using inspection methods. In [51] the researchers perform
two experiments to verify the effectiveness of the tool. In these
cases we can state that we feel a certain degree of confidence that
the tool will be used to fulfill its intended use, within its given
context.

Externally evaluated tools are those tools whose performance
has been tested outside the environment in which they were orig-
inally built. In [52], the authors explain how the 4everedit tool was
successfully evaluated in a large-scale industrial process engineer-
ing project, while in [39], the GENESIS tool was evaluated by two
industrial partners of the project. There is, therefore, a certain de-
gree of confidence that these tools can be considered as useful
tools for distributed environments.

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 677
A first result is that only 25.8% of the tools presented (see Table
15), that is, 33 out of 132 tools, have been evaluated in a distrib-
uted environment. Moreover, not all evaluations show that the tool
is really useful in a distributed environment because some of them
are only preliminary evaluations since the tool is a prototype in the
early phase of development, or an evaluation in a real environment
is part of its developers’ future work.

Although 132 tools are described in this review, it was not pos-
sible to report whether all these tools have been evaluated or are
used in practice because they are at an early stage of development,
have been put forward as a theory, or the papers in which they ap-
peared have not included a report on how they were validated or
evaluated. 98 tools, that is, the 74.2% of the tools have not therefore
been detected as evaluated tools. Moreover, the goal of a large
number of papers was not to evaluate the tools, but to present
them and their features, as occurs in [16], whose authors include
a large number of tools which are classified by the process in which
they can be used.

Table 16 lists those tools that have undergone some form of eval-
uation as reported in the associated published paper. Clearly, tools
not listed in this table may have been evaluated, but seeking this
information outside the associated report is not within the scope
of this study. Moreover, we include information about the goal of
the tool, how the evaluation has been performed and the references
in which an extended explanation of this evaluation can be found.
Table 15
Tools evaluated I.

Type of evaluation No. of tools Percentage

External 25 18.9
Internal 9 6.9
None detected 98 74.2
Total number of tools 132 100

Table 16
Tools evaluated II.

Tool Intended use

Externally evaluated
SYSIPHUS [32], Together [53] Distributed Design
ADAMS [33], Augur [29], RepoGuard [49],

WikiDev [48]
Configuration
Management

WorldView [28], WorkSpace Activity Viewer
[28]

Visualize team structure

IssuePlayer [54] Project Management
Syde [30], Share [55] Software Construction
MUDABlue [56] Categorizing Software

Systems
DOCTOR [57], 4everedit [52], Google Docs [40] Documentation

Management
XCHIPS [58], GENESIS [39] Process Management
iBistro [36] Knowledge Management
Adobe Connect Now [59], WebEx [40] Virtual Meetings
CollabDev [45] Knowledge Management
Tesseract [37] Socio-technical analysis
EGRET [60] Requirement

Management
LiveNet [42] Knowledge Management

Internally evaluated/validated
Ariadne [28] Socio-Technical analysis
MPK20 [61] Virtual Meetings
CAB [62], ARENA [63] Requirements

Management
XPlanner [64] Project Management
Saros [65] Collaboration

Management
CASI [66], SoftFab [6] Configuration

Management
Libra-on-chat [51] Distributed Design
Another important result is that, as only 39% of the studied re-
search tools presented any kind of evaluation (with only 24 individ-
ual tools reporting a level of external validity), there is a need for
studies in general to perform tool evaluation as a standard to pro-
vide some assurance that the tools presented will be useful in GSE.

Appendix B presents an extended version of Table 16 in which
each tool is listed along with an explanation of how the evaluation
was performed and a detailed description of each tool’s intended
use.

4. Threats to validity

This section provides a discussion of the validity of the results
presented. With regard to its external validity, which implies the
possibility of generalizing the findings, this work is limited in
two aspects.

The first issue consists of the limitation of the number of tools
found. This work presents 132 tools, obtained, on the whole, from
research works using the process we explained in Section 2. It is
possible, however, that some existing tools have not been included
in our study. Moreover, searching for tools through research
sources and peer reviewed publications only, may exclude some
commercial tools that are available in the market, as not all com-
mercial tools are represented in this kind of work. However, in or-
der to complete this study and provide more complete information
about commercial tools, we have created a website (https://sites.-
google.com/site/toolsgsd/) where both commercial and non-
commercial tools are described. Apart from the tools obtained in
this review, the website also includes those tools that were not
obtained by using systematic methods, and were attained by other
means such as experts’ recommendations, advertisements, web
searches, etc. The goal of this website is to maintain an up-to-date
tool database. Therefore, each time we discover new tools the
website will be updated with new information.

The second limitation to this study relates to the external valid-
ity of the tools presented. Some of the primary studies offer only a
brief description of these tools, and only where one single tool is
presented in a given study is the description of the tool sufficiently
thorough. In the worst case, the tools are simply named. All this
implies that it is necessary to search for information about the
tools on their websites or in similar places. That said, the informa-
tion provided on these websites is, in some cases, incomplete, and
possibly biased since it is often only trade or sales information and
not many technical details are shown. In the majority of cases,
however, the descriptions of the tools found on their websites have
been sufficiently thorough to allow us to obtain the main features
of each tool.

With regard to the construct validity, which is related to obtain-
ing the right measure, the main challenge was to define the scope
in relation to what is considered to be a GSE tool. In this respect,
we considered GSE tools to be those presented as GSE tools in
the studies, as well as those presented as DSD tools with a high le-
vel of distribution (those tools that can be used in a highly distrib-
uted environment).

In the case of the conclusion validity, which is concerned with
the ability to replicate the same findings, we consider that the study
has been validated through the systematic process and the periodic
reviews carried out by the three researchers involved in this work.
Moreover, in this work we have included sufficient details to allow
the process to be reproduced. However, one possible problem in
relation to this type of validity concerns the paper and tool classifi-
cation. This was done by 3 researchers with the same background
and belonging to the same research group; a slightly different clas-
sification might therefore have been obtained if it had been done by
other researchers from other groups. The number of results ob-
tained from the searches might also have been different.

http://www.sites.google.com/site/toolsgsd/
http://www.sites.google.com/site/toolsgsd/

678 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
5. Conclusions and future work

This work presents a systematic mapping review of GSE tools
which was performed by following both the guidelines of Petersen
et al. [1] and those of other important mapping reviews in the area
of GSE.

After carrying out the literature review, a first conclusion was
that there are no other systematic reviews of GSE tools. The most
complete work in terms GSE tool research is [16], in which the
authors present a set of tools classified by the area in which they
can be used.

In the papers studied, the descriptions included are sometimes
brief and do not provide sufficient information about the potential
of the tools, nor do they allow users to discover which features
they may offer. This makes the systematic process more complex,
since it is necessary to introduce recursive searches if the main fea-
tures of each tool are to be discovered.

With regard to the tools studied, we found that most of them
focus on the subjects of Virtual Meeting Tools (12.2%), Software Engi-
neering Management Tools (16%) and Knowledge Management Tools
(16%). We believe that these results have been obtained because
the main tools that GSE companies need are those related to com-
munication, such as Virtual Meeting Tools. In the case of Software
Engineering Management Tools we have found a large amount of
tools, owing to the expansion of Web-based tools that provide pro-
ject control from a simple Web-browser. Finally, the number of
Knowledge Management Tools has increased because of the growing
use of wikis to manage knowledge (also accessible from a Web-
browser). In fact, these three subjects cover 44.2% of the tools
found. However, other subjects such as Socio Cultural Tools, Soft-
ware Engineering Process Tools or Software Quality Tools consist of
only 3%, 3% and 5.3% of the total number of tools studied.

Bearing in mind that only 3% of the tools are related to socio-cul-
tural aspects, perhaps it would be advisable to develop tools or tool
features that will help group members to get to know each other
and to facilitate communication by increasing the feeling of trust.

With regard to the percentages obtained, we can state that most
of the tools found were applications developed in research groups
or labs, or free tools, because 77.1% of the tools discovered are re-
search or free tools (43.6% are research tools and 33.5% are free
tools). This would appear to be logical, since the sources selected
to search for the primary studies focus on research areas. As future
work, we propose to carry out another review of GSE tools using
other kinds of search engines, in order to obtain more commercial
tools, such as Jazz tools Rational Clearcase, Rational Requisite Pro,
etc.

We can also state that awareness features are usually supported
by the studied tools at two levels (team activity awareness and so-
cial awareness) to make team members feel closer to the rest of the
team and have the best overview of what is happening in the
project.

Supporting informal communication is usually considered by
those of the studied tools that are focused on software design
activities and it has also been detected that this support is com-
monly integrated into the tool itself, principally if the tool allows
synchronous collaboration. Moreover, in terms of integration, it
seems that it might be useful to use ‘‘compatible’’ tools in order
to share a common backbone, and thus save time and avoid incon-
sistencies, incompatibilities and duplicated information that make
distributed coordination and control more difficult. In fact, this
may imply a lack of coordination among team members in relation
to the information shared, because the information or data gener-
ated by a tool cannot be used in other processes, owing to the
format used.
We can thus conclude that the most common features provided
by the set of 132 GSE tools included in this study are: Awareness as
regards both the team members’ activities and social aspects;
informal communication support; interoperability among tools;
and formal and informal knowledge management.’’ One problem
detected after studying the tools is that, although there are suffi-
cient tools to support most areas or processes in the software life-
cycle, there is a lack of connection between the tools. Almost only
when using tools from the same company (i.e. IBM or Microsoft
tools), and only in some areas, is it possible to integrate the differ-
ent tools.

Another problem was the difficulty involved in studying
whether the tools were useful in a GSE domain. In this respect,
the general rule was to consider all collaborative and Web-based
tools as being useful for GSE. However, as future work, the list of
tools presented in this study may be reviewed to test which partic-
ular GSE task(s) each tool supports. To carry out this task, we are
currently performing a survey which includes structured inter-
views with practitioners to discover which tools are being used
in companies and labs for GSE projects or experiments.

Finally, we plan to use this list of 132 tools to obtain informa-
tion about the features that an integrated framework needs in or-
der to develop a technological framework to support the complete
software lifecycle in a GSE context.
Acknowledgements

This work has been funded by the PEGASO/MAGO Project (Min-
isterio de Ciencia e Innovación MICINN, TIN2009-13718-C02-01)
and co-funded by FEDER. It is also supported by ENGLOBAS
(PII2I09-0147-8235) and GLOBALIA (PEII11-0291-5274), funded
by Consejería de Educación y Ciencia (Junta de Comunidades de
Castilla-La Mancha) and co-funded by FEDER (Spain), as well as,
ORIGIN (IDI-2010043 (1-5)) funded by CDTI and FEDER. This re-
search is also supported, in part, by Science Foundation Ireland
Grant 10/CE/I1855. Finally, we would also to thank the anonymous
reviewers for their useful and constructive comments.
Appendix A

This section provides the primary studies selected from the sys-
tematic review, sorted alphabetically:
List of primary studies in the systematic review
1.
 B. Al-Ani, et al., Continuous coordination within the
context of cooperative and human aspects of software
engineering, in: Proceedings of the 2008 International
Workshop on Cooperative and human aspects of
software engineering, ACM, Leipzig, Germany, 2008, pp.
1–4.
2.
 M. Ali-Babar, The application of knowledge-sharing
workspace paradigm for software architecture processes,
in: Proceedings of the 3rd International Workshop on
Sharing and Reusing Architectural Knowledge, ACM,
Leipzig, Germany, 2008, pp. 45–48.
3.
 M. Ali-Babar, et al., Introducing tool support for
managing architectural knowledge: an experience
report, in: 15th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based
Systems (ecbs 2008), 2008, pp. 105–113.
4.
 J. Andrea, Envisioning the Next Generation of Functional
Testing Tools, IEEE Software, 2007, pp. 58–66.

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 679
Appendix A (continued)

List of primary studies in the systematic review
5.
 Andreas Braun, Allen H. Dutoit, Andreas G. Harrer, Bernd
Brüge, iBistro: A Learning Environment for Knowledge
Construction in Distributed Software Engineering
Courses apsec, pp. 197.
6.
 Y. Assogba, J. Donath, Share: a programming
environment for loosely bound cooperation, in:
Proceedings of the 28th International Conference on
Human Factors in Computing Systems, ACM, Atlanta,
Georgia, USA, 2010, pp. 961–970.
7.
 L. Aversano, et al., Managing coordination and
cooperation in distributed software processes: the
GENESIS environment. Software Process: Improvement
and Practice 9(4) (2004) 239–263.
8.
 J.y. Bang, et al., CoDesign: a highly extensible
collaborative software modeling framework, in:
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering – Volume 2, ACM,
Cape Town, South Africa, 2010, pp. 243–246.
9.
 H. Bani-Salameh, C. Jeffery, J. Al-Gharaibeh, SCI: towards
a social collaborative integrated development
environment, in: International Conference on
Computational Science and Engineering, 2009, pp. 915–
920.
10.
 R. Bartholomew, Evaluating a networked virtual
environment for globally distributed avionics software
development, in: International Conference on Global
Software Engineering (ICGSE 2008), Bangalore, India,
2008, pp. 227–231.
11.
 K. Bauer, et al., WikiDev 2.0: discovering clusters of
related team artifacts, in: Proceedings of the 2009
Conference of the Center for Advanced Studies on
Collaborative Research, ACM, Ontario, Canada, 2009, pp.
174–187.
12.
 J.T. Biehl, et al., FASTDash: a visual dashboard for
fostering awareness in software teams, in: Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, ACM, San Jose, California, USA, 2007, pp. 1313–
1322.
13.
 P. Bouillon, J. Krinke, Using Eclipse in distant teaching of
software engineering, in: Proceedings of the 2004 OOPSLA
Workshop on Eclipse Technology eXchange, ACM,
Vancouver, British Columbia, Canada, 2004, pp. 22–26.
14.
 N. Boulila, Group support for distributed collaborative
concurrent software modeling, in: 19th IEEE
International Conference on Automated Software
Engineering (ASE’04), Linz, Austria, 2004, pp. 422–425.
15.
 B. Bruegge, A.H. Dutoit, T. Wolf, Sysiphus: enabling
informal collaboration in global software development,
in: International Conference on Global Software
Engineering (ICGSE’06), Florianopolis, Brazil, 2006, pp.
139–148.
16.
 B. Bruegge, et al., Supporting distributed software
development with fine-grained artefact management, in:
International Conference on Global Software Engineering
(ICGSE’06), 2006, pp. 213–222
17.
 F. Calefato, F. Lanubile, Using frameworks to develop a
distributed conferencing system: an experience report.
Software: Practice and Experience 39(15) (2009) 1293–
1311.
Appendix A (continued)

List of primary studies in the systematic review
18.
 F. Calefato, D. Gendarmi, F. Lanubile, Embedding social
networking information into jazz to foster group
awareness within distributed teams, in: Proceedings of
the 2nd International Workshop on Social Software
Engineering and Applications, ACM, Amsterdam,
Netherlands, 2009, pp. 23–28.
19.
 K.M. Carley, et al., Toward an interoperable dynamic
network analysis toolkit, Decision Support Systems 43(4)
(2007) 1324–1347.
20.
 M. Cataldo, et al., CAMEL: a tool for collaborative
distributed software design, in: IEEE International
Conference on Global Software Engineering (ICGSE
2009), Limerick, Ireland, 2009, pp. 83–92.
21.
 A. De Lucia, et al., Enhancing collaborative synchronous
UML modelling with fine-grained versioning of software
artefacts, Journal of Visual Languages and Computing
18(5) (2007) 492–503.
22.
 K. Dullemond, B.v. Gameren, R.v. Solingen, How
technological support can enable advantages of agile
software development in a GSE setting, in: IEEE
International Conference on Global Software Engineering
(ICGSE 2009), Limerick, Ireland, 2009, pp. 143–152.
23.
 R.L. Edwards, J.K. Stewart, M. Ferati, Assessing the
effectiveness of distributed pair programming for an
online informatics curriculum, ACM Inroads 1(1) (2010)
48–54.
24.
 A. Fernández, et al., Guided support for collaborative
modeling, enactment and simulation of software
development processes, Software Process: Improvement
and Practice 9(2) (2004) 95–106.
25.
 S. Fonseca, C.d. Souza, D. Redmiles, Exploring the
relationship between dependencies and coordination to
support global software development projects, in:
International Conference on Global Software Engineering
(ICGSE’06), Florianopolis, Brazil, 2006, pp. 243–244.
26.
 J. Froehlich, P. Dourish, Unifying artifacts and activities in
a visual tool for distributed software development teams,
in: 26th International Conference on Software
Engineering (ICSE’04), Edinburgh, Scotland, 2004, pp.
387–396.
27.
 V. Garousi, J. Leitch, IssuePlayer: an extensible
framework for visual assessment of issue management in
software development projects, Journal of Visual
Languages and Computing 21(3) (2010) 121–135.
28.
 A. Gupta, S. Seshasai, 24-h knowledge factory: using
Internet technology to leverage spatial and temporal
separations, ACM Trans. Internet Technol. 7(3) (2007).
29.
 B. Hanks, Empirical evaluation of distributed pair
programming, International Journal of Human–
Computer Studies 66(7) (2008) 530–544.
30.
 L. Hattori, M. Lanza, Syde: a tool for collaborative
software development, in: Proceedings of the 32nd ACM/
IEEE International Conference on Software Engineering –
Volume 2, ACM, Cape Town, South Africa, 2010, pp. 235–
238.
31.
 S.R. Haynes, et al., Collaborative architecture design and
evaluation, in: Proceedings of the 6th Conference on
Designing Interactive Systems, ACM, University Park, PA,
USA, 2006, pp. 219–228.
(continued on next page)

680 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
Appendix A (continued)

List of primary studies in the systematic review
32.
 M. Held, W. Blochinger, Structured collaborative
workflow design, Future Generation Computer Systems
25(6) (2009) 638–653.
33.
 S. Kawaguchi, et al., MUDABlue: An automatic
categorization system for Open Source repositories,
Journal of Systems and Software 79(7) (2006) 939–953.
34.
 T. Krishnamurthy, S. Subramani, Ailments of Distributed
Document Reviews and Remedies of DOCTOR
(DOCument Tree ORganizer Tool) with distributed
reviews support, in: IEEE International Conference on
Global Software Engineering (ICGSE 2008), Bangalore,
India, 2008, pp. 210–214.
35.
 A. Lamersdorf, J. Munch, TAMRI: a tool for supporting
task distribution in global software development
projects, in: International Conference on Global Software
Engineering 2009 (ICGSE 2009), Limerick, Ireland, 2009,
pp. 322–327.
36.
 F. Lanubile, et al., Collaboration Tools for Global Software
Engineering. Software Technology 27(2) (2010) 52–55.
37.
 Filippo Lanubile, Teresa Mallardo, Tool support for
distributed inspection, in: Computer software and
applications conference, annual international, 26th
annual international computer software and applications
conference, 2003, pp. 1071.
38.
 F. Lanubile, T. Mallardo, F. Calefato, Tool support for
geographically dispersed inspection teams, Software
Process: Improvement and Practice 8(4) (2003) 217–231.
39.
 L. Layman, et al., Essential communication practices for
extreme programming in a global software development
team, Information and Software Technology 48(9) (2006)
781–794.
40.
 M. Legenhausen, et al., RepoGuard: a framework for
integration of development tools with source code
repositories, in: Fourth IEEE International Conference on
Global Software Engineering (ICGSE), Limerick, Ireland,
2009, pp. 328–331.
41.
 N.G. Lester, F.G. Wilkie, Evaluating UML tool support for
effective coordination and communication across
geographically disparate sites, in: 12 International
Workshop on Software Technology and Engineering
Practice (STEP’04), 2004, pp. 57–64.
42.
 I. Liccardi, CAWS: improving users’ awareness in
collaborative authoring activities, in: Group ‘07 Doctoral
Consortium Papers, ACM, Sanibel Island, Florida, 2007,
pp. 1–2.
43.
 R. Martignoni, Global sourcing of software development
– a review of tools and services, in: Fourth IEEE
International Conference on Global Software
Engineering, Limerick, Ireland, 2009, pp. 303–308.
44.
 M. Meisinger, A. Rausch, M. Sihling, 4everedit – team-
based process documentation management, Software
Process: Improvement and Practice 11(6) (2006) 627–
642.
45.
 B. Meyer, Design and code reviews in the age of the
internet, Commun. ACM 51(9) (2008) 66–71.
46.
 R. Morgan, F. Maurer, MasePlanner: a card-based
distributed planning tool for agile teams, in: IEEE
International Conference on Global Software Engineering
(ICGSE’06), Florianopolis, Brazil, 2006, pp. 132–138.
Appendix A (continued)

List of primary studies in the systematic review
47.
 T. Niinimaki, A. Piri, C. Lassenius, Factors affecting audio
and text-based communication media choice in global
software development projects, in: IEEE International
Conference on Global Software Engineering 2009 (ICGSE
2009), Limerick, Ireland, 2009, pp. 153–162.
48.
 S. Paul, et al., Impact of heterogeneity and collaborative
conflict management style on the performance of
synchronous global virtual teams, Information and
Management 41(3) (2004) 303–321.
49.
 C. Pickering, et al., 3D global virtual teaming
environment, in: Fourth International Conference on
Creating, Connecting and Collaborating through
Computing (C5’06), Berkeley, California, 2006, pp. 126–
135.
50.
 S. Salinger, et al., Saros: an eclipse plug-in for distributed
party programming, in: Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of
Software Engineering, ACM, Cape Town, South Africa,
2010, pp. 48–55.
51.
 S. Sarkar, R. Sindhgatta, K. Pooloth, A collaborative
platform for application knowledge management in
software maintenance projects, in: Proceedings of the 1st
Bangalore Annual Compute Conference, Bangalore, India,
2008, pp. 1–7.
52.
 A. Sarma, et al., Tesseract: Interactive visual exploration
of socio-technical relationships in software development,
in: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, Vancouver, BC,
Canada, 2009, pp. 23–33.
53.
 F. Servant, et al., CASI: preventing indirect conflicts
through a live visualization, in: Proceedings of the 2010
ICSE Workshop on Cooperative and Human Aspects of
Software Engineering, ACM, Cape Town, South Africa,
2010, pp. 39–46.
54.
 N. Seyff, et al., Enhancing GSS-based requirements
negotiation with distributed and mobile tools, in: 14th
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise (WETICE’05),
Linkoping, Sweden, 2005, pp. 87–92.
55.
 V. Sinha, B. Sengupta, S. Chandra, Enabling Collaboration
in Distributed Requirements Management, IEEE
Software, 2006, pp. 52–61.
56.
 H. Spanjers, et al. Tool support for distributed software
engineering, in: International Conference on Global
Software Engineering (ICGSE’06), Florianopolis, Brazil,
2006, pp. 187–198.
57.
 H. Su, S. Jodis, H. Zhang, Providing an integrated software
development environment for undergraduate software
engineering courses, J. Comput. Small Coll. 23(2) (2007)
143–149.
58.
 A. Tang, et al., A comparative study of architecture
knowledge management tools, Journal of Systems and
Software, in press, Corrected Proof., 2009, pp. 352–
370.
59.
 M.R. Thissen, et al., Communication tools for distributed
software development teams, in: Proceedings of the 2007
ACM SIGMIS CPR Conference on Computer Personnel
Research: The Global Information Technology Workforce,
ACM, St. Louis, Missouri, USA, 2007, pp. 28–35.

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 681
Appendix A (continued)

List of primary studies in the systematic review
60.
 E. Trainer, et al., Analyzing a socio-technical visualization
tool using usability inspection methods, IEEE Symposium
on Visual Languages and Human-Centric Computing,
2008, pp. 78–81.
61.
 C. Treude, The role of emergent knowledge structures in
collaborative software development, in: Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering – Volume 2, ACM, Cape Town, South Africa,
2010, pp. 389–392.
62.
 C. Treude, M.-A. Storey, Awareness 2.0: staying aware of
projects, developers and tasks using dashboards and
feeds, in: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering –
Volume 1, ACM, Cape Town, South Africa, 2010, pp. 365–
374.
63.
 C. Treude, M.-A. Storey, How tagging helps bridge the gap
between social and technical aspects in software
development, in: International Conference on Software
Engineering 2009 (ICGSE 2009), Limerick, Ireland, 2009,
pp. 12–22.
64.
 J. Whitehead, Collaboration in software engineering: a
roadmap, in: 2007 Future of Software Engineering, IEEE
Computer Society, 2007, pp. 214–225.
65.
 W. Xiao, C. Chi, M. Yang, On-line collaborative software
development via wiki, in: Proceedings of the 2007
International Symposium on Wikis, ACM, Montreal,
Quebec, Canada, 2007, pp. 177–183.
66.
 D. Xu, et al., Distributed collaborative modeling support
system associating UML diagrams with chat messages,
in: 33rd Annual IEEE International Computer Software
and Applications Conference, 2009, pp. 367–372.
Appendix B

GSD Tools that have been evaluated.
Tool
 Designed to
 Evaluation
Ariadne
 Highlight the socio-
technical relationships
between source-code
artifacts and the
developers
implementing those
artifacts
Preliminary evaluation
of Ariadne’s
visualization using
inspection methods
appropriate for visual
interfaces [28]
WorldView
 Provide a central
repository that can
derive, retain and
visualize the structure
of distributed teams
Work in progress:
Evaluation of the tool
in real world setting
with industrial
partners. Controlled
experiments
conducted in order to
assess the usefulness
and gather
information on how to
improve it [28]
WorkSpace
Activity
Viewer
Visualize the
developers and
artifacts in a project
Visualize ongoing
activities in an
opensource project
Appendix B (continued)
Tool
 Designed to
 Evaluation
using a 3D metaphor
and give managers an
overview of ongoing
activities in a project
and observe the social
aspects of
development evolving.
Finding: A particular
developer started the
project, but then
become inactive. Later,
new developers joined
the project and one of
them became the new
leader on the project
and attracted
additional developers
[28]
LiveNet
 Provide different
mechanisms for
capturing and sharing
explicit and tacit
knowledge about
processes, activities,
and artifacts
The workspace
networks supported
by this tool are
particularly applicable
to capture and
encourage sharing
Architectural
Knowledge in
physically distributed
teams [42]
iBistro
 Provide meeting
spaces for informal
collaboration and
communication
acquiring informal
knowledge
Tested and improved
in a small distributed
software development
project at TU München
and the National
University of
Singapore [36]
Share
 Provide automatic
code sharing, tracking
copy and paste,
visualizing
relationships and
allow explicit
reference and linking
of artifacts
Evaluated through a
themed design/
programming
competition to
scaffold the creation of
a small scale
community of practice
providing loose
associations and
shared interests [55]
GENESIS
 Cover the
communication and
coordination
requirements within a
software process that
are necessary for the
planning, execution
and coordination of all
task-related, spatially
and temporally
distributed activities
Evaluated by the two
main industrial
partners of the project,
LogicDIS and
SchlumbergerSema,
acting as pilot users,
providing real
scenarios for the
elicitation of
requirements and
validation of the
platform [39]
MPK20
 Provide a virtual 3D
environment in which
to collaborate by using
avatars
Evaluated different
kinds of verbal and
non-verbal
communication,
application sharing,
and (briefly) its
potential for
synchronizing
(continued on next page)

682 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
Appendix B (continued)
Tool
 Designed to
 Evaluation

activities across time
zones [61]
WikiDev R
 Provide a wiki as the
central platform in
which to integrate
information about the
various artifacts of
interest, to cluster this
information in clusters
of relevant artifacts,
and to present views
on this information
that cut across the
individual tool
boundaries
Evaluated its
effectiveness with a
case study [48]
SYSIPHUS
 Provide a uniform
framework for system
models, collaboration
artifacts, and
organizational models
encouraging
participants to make
communication and
issues explicit in the
context of system
models and become
aware of relevant
stakeholders
Used since 2000 both
in project courses and
within consulting
projects for industry
[32]
ADAMS
 Provide an artifact
management system,
focusing on the
support of high level
documentation
versioning
Experimented on from
April 15th to July 20th
2005 in the Software
Engineering courses of
the Computer Science
program at the
University of Salerno
(Italy). It has been
used to coordinate the
work of project teams
[33]
Adobe
Connect
Now
Web conferencing
software with screen
sharing application,
interactive whiteboard
function, remote
control desktop
function and text,
audio, and video chat
options for
synchronous
communication
A set of students
evaluated the tool by
using it and rating it.
The majority agreed
that when performing
pair programming as
virtual collaboration,
Connect Now was easy
to use and made it
easy to share files. The
tool was considered as
tolerable as a software
solution for online pair
programming [59]
XCHIPS
 Support collaborative
process modeling,
where process models
are constructed on the
basis of a graphical
and hypermedia
structure
Scenario-based
evaluations of the
prototype with
distributed
participants from the
application domain in
the course of the e-QF
project [58]
Appendix B (continued)
Tool
 Designed to
 Evaluation
Augur
 Create visual
representations of
both software artifacts
and software
development activities
and allow developers
to explore the
relationship between
them
Informal evaluations
with developers
engaged in active
development of multi-
authored systems to
check the
effectiveness [29]
IssuePlayer
 Visualize flows of
incoming and handled
artifacts, along with
the people involved
(team members)
during the lifetime of a
software development
project
Two independent
empirical studies with
two industrial
partners [54]
Syde
 Share change and
conflict information
across developer’s
workspaces
The Inspector plug-in
was used by an
industrial team and
the history was used
to analyze code
ownership. The Scamp
plug-in was used by
two teams of students
to develop their
course’s project
collaboratively and
they assessed the
usefulness of the plug-
in through a
qualitative study [30]
CAB
 Support early
requirements
engineering and
architecture
evaluation
Used as the basis for
distributed evaluation
walkthroughs with
S&R project
stakeholders. Finding:
It is possible to evolve
an early, draft
architectural diagram
created from a single
design stakeholder
meeting to a more
accurate
representation by
gathering comments
and suggestions made
by subject matter
experts over time [62]
MUDABlue
 Automatically
categorize software
systems
Experiment with 41
projects to show that
the tool is able to
make a categorization
without any
knowledge about
target software
systems [56]
DOCTOR
 Improve the process of
distributed software
reviews
The tool was used in
real projects to check
the quality of the
review. Findings: It

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 683
Appendix B (continued)
Tool
 Designed to
 Evaluation

helps to reduce
manual work for both
the document owner
and the reviewer and
hence results in
significant effort
reduction for the
review process. It also
helps to identify and
track a review that is
being delayed and
take corrective
measures earlier [57]
XPlanner
 Support project
tracking
The tool was
successfully used to
analyze the team’s
velocity, which is the
amount of effort (in
hours) the team made
in the previous
iteration. The velocity
was used to determine
the number of features
that should be
scheduled for the next
iteration [64]
RepoGuard
 Link version control
systems to other
software development
tools
The tool was used to
validate the
framework for
Subversion and it was
also used in many of
the German Aerospace
Center internal and
external development
projects [49]
Together
 CASE tool supporting
UML models
The developers of a
company have
benefitted greatly
from the purchase and
use of this tool. The
reverse engineering
facility was used to a
great extent when
documentation did not
already exist for the
code [53]
4everedit
 XML based editor with
a dynamic user
interface, team-
support through
integration with the
versioning system CVS
and a mechanism for
post-processing the
edited documents
Evaluated in a large-
scale industrial
process engineering
project. It was
successfully used to
support team-based
editing, assure
structure and
consistency, enable
post-processing and
change document
structure. Over a year,
26 editors, from more
than five companies,
have concurrently
Appendix B (continued)
Tool
 Designed to
 Evaluation

elaborated process
documentation with
635 pages and 34 MB
in size using it [52]
WebEx
 Share screens
 Evaluated by using the
tool in the
development of
EiffelStudio, a large
integrated
development
environment (IDE). It
was considered
especially useful for
running a demo of,
say, a new proposal for
a graphical-user-
interface idea or
another element [40]
Google
Docs
Share documents
 This tool was used for
collaborative editing
in the development of
EiffelStudio, a large
integrated
development
environment [40]
Saros
 Manage and map
means of collaboration
in a distributed
environment (which
are normally
performed in a co-
located manner)
It was highlighted that
this tool can be used in
scenarios such as
reviews or knowledge
transfer [65]
CollabDev
 Analyze applications
in multiple languages
and render various
structural,
architectural, and
functional insights to
the people involved in
maintenance
The tool was used by
10 team members in
two projects. One
team used it for their
maintenance and
stated that ‘‘ the tool
helped them in
ensuring that there
were no missing
impacts’’ [45]
Tesseract
 Utilize cross-linked
displays to visualize
the relationships
between artifacts,
developers, bugs, and
communications
The tool was evaluated
by demonstrating its
feasibility with
GNOME project data,
assessing its usability
via informal user
evaluations, and
verifying its suitability
for the open source
community via semi-
structured interviews
[37]
CASI
 Inform developers of
the changes that are
taking place in a
software project and
the source code
entities influenced by
them
It was tested in some
small examples and
future work includes
testing it in more
projects of different
sizes and in real
situations with real
(continued on next page)

684 J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685
Appendix B (continued)
Tool
 Designed to
 Evaluation

developers [66]

ARENA
 Negotiate

requirements in a
distributed manner
To evaluate the
distributed and mobile
negotiation tools
(ARENA II and ARENA-
M respectively) an
initial evaluation
study was performed
to investigate whether
stakeholders are able
to successfully use the
tools, to identify
usability flaws, and to
identify major
differences in usage
between them [63]
EGRET
 Support global
software development
teams in collaborating
on requirements
management
The tool received
positive reviews in
various communities
within IBM, including
practitioners and tool
builders. Reviewers
felt that the
persistence of ad hoc
discussions with
remote team members
would enable
‘‘knowledge logging’’
while the use of
traceability to
communicate
requirement changes
would help ‘‘enforce
accountability’’ [60]
SoftFab
 Automate building
and test processes
A case study was
conducted to
investigate the
applicability of SoftFab
in collaborations that
involve multiple
partners. This case
study was used to
show the problems
that are encountered
in such a
collaboration, and how
SoftFab is setup and
used [6]
Libra-on-
chat
Distributed
synchronous
collaborative
modeling support
system for UML
diagrams
It was evaluated
through two
experiments, the first
to validate the
effectiveness of
association of
conversations with
model elements and
the second to validate
how well the system
supports utilizing the
stored conversation
contents [51]
References

[1] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: 12th International Conference on Evaluation and
Assessment in Software Engineering (EASE), Bari, Italy, 2008.

[2] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using Mapping Studies in
Software Engineering, in: PPIG, 2008, pp. 195–204.

[3] P.J. Ågerfalk, B. Fitzgerald, H.H. Olsson, E.Ó. Conchúir, Benefits of global
software development: the known and unknown, in: International Conference
on Software Process, ICSP 2008, Leipzig, Germany, Springer, Berlin/Heidelberg,
2008, pp. 1–9.

[4] K. Dullemond, B.v. Gameren, Technological Support for distributed agile
development, in: Department of Software Technology, Delf University of
Technology, Delf, 2009, p. 223.

[5] A.A. Keshlaf, S. Riddle, Risk management for web and distributed software
development projects, in: Fifth International Conference on Internet
Monitoring and Protection, Barcelona, Spain, 2010, pp. 22–28.

[6] H. Spanjers, M.t. Huurneç, B. Graaf, M. Lormans, D. Bendas, R. van, Tool support
for distributed software engineering, in: International Conference on Global
Software Engineering (ICGSE’06), Florianopolis, Brazil, 2006, pp. 187–198.

[7] C. Ebert, Global Software Engineering: Distributed Development, Outsourcing,
and Supplier Management, Wiley, IEEE Computer Society Books, Los Alamitos,
USA, 2010.

[8] E. Carmel, Global Software Teams: Collaborating Across Borders and Time
Zones, Prentice Hall PTR, 1999. 269.

[9] J.D. Herbsleb, A. Mockus, T.A. Finholt, R.E. Grinter, Distance, dependencies and
delay in a global collaboration, in: ACM Conference on Computer Supported
Cooperative Work, ACM, New York, NY, USA, 2000.

[10] R. Prikladnicki, L. Pilatti, Improving contextual skills in global software
engineering: a corporate training experience, in: IEEE International
Conference on Global Software Engineering (ICGSE’08), IEEE Computer
Society, Bangalore, India, 2008, pp. 239–243.

[11] K. Berkling, M. Geisser, T. Hildenbrand, F. Rothlauf, Offshore software
development: transferring research findings into the classroom, in: S. Berlin
(Ed.), Software Engineering Approaches for Offshore and Outsourced
Development, Heidelberg, 2007, pp. 1–18.

[12] B. Lutz, Linguistic challenges in global software development: lessons learned
in an international SW development division, in: Fourth IEEE International
Conference on Global Software Engineering (ICGSE’09), IEEE Computer Society,
Limerick, Ireland, 2009, pp. 249–253.

[13] D. Damian, A. Hadwin, B. Al-Ani, Instructional design and assessment
strategies for teaching global software development: a framework, in:
International Conference on Software Engineering (ICSE’06), Shanghai, China,
ACM Press, New York, NY, USA, 2006.

[14] J. Favela, F. Peña-Mora, An experience in collaborative software engineering
education, IEEE Software 18 (2) (2001) 47–53.

[15] D. Petkovic, G.D. Thompson, R. Todtenhoefer, Assessment and comparison of
local and global SW engineering practices in a classroom setting, in:
Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, ACM, Madrid, Spain, 2008, pp. 78–82.

[16] F. Lanubile, C. Ebert, C. Prikladnicki, A. Vizcaíno, Collaboration tools for global
software engineering, IEEE Software 27 (2) (2010) 52–55.

[17] B. Sengupta, S. Chandra, V. Sinha, A research agenda for distributed software
development, in: Proceedings of the 28th International Conference on
Software Engineering, ACM, Shanghai, China, 2006.

[18] C. Laurent, A sensitivity analysis approach to select IT-tools for global
development projects, in: Tool Support and Requirements Management in
Distributed Project, Munich, Germany, 2007, pp. 38–42.

[19] F.Q.B.d. Silva, C. Costa, A. Cesar C. França, R. Prikladinicki, Challenges and
solutions in distributed software development project management: a
systematic literature review, in: International Conference on Global Software
Development (ICGSE 2010) Princeton, NJ, USA, 2010.

[20] S. Jalali, Agile practices in global software engineering – a systematic map, in:
2010 5th IEEE International Conference on Global Software Engineering,
Princeton, New Jersey, USA, 2010.

[21] D. Šmite, C. Wohlin, T. Gorschek, R. Feldt, Empirical evidence in global software
engineering: a systematic review, Empirical Software Engineering 15 (1)
(2010) 91–118.

[22] E. Hossain, M. Ali-Babar, H. Paik, Using scrum in global software development:
a systematic literature review, in: Fourth IEEE International Conference on
Global Software Engineering (ICGSE’09), IEEE Computer Society, Limerick,
Ireland, 2009, pp. 175–184.

[23] T.L. Friedman, The World is Flat: Brief History of the 21st Century, Farrar,
Straus and Girou, New York, 2005.

[24] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Version 2.3, in EBSE Technical Report, 2007.

[25] A. Abran, J.W. Moore, Guide to the software engineering body of knowledge
(SWEBOK�), in: IEEE Computer Society 2004 Guide, 2004.

[26] A. Fuggetta, A classification of CASE technology, Computer 26 (12) (1993) 25–
38.

[27] A. Boden, G. Avram, L. Bannon, V. Wulf, Knowledge management in distributed
software development teams – does culture matter? in: International
Conference on Global Software Engineering, Limerick, Ireland, 2009.

J. Portillo-Rodríguez et al. / Information and Software Technology 54 (2012) 663–685 685
[28] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, André v.d. Hoek, D. Redmiles,
Continuous coordination within the context of cooperative and human aspects
of software engineering, in: Proceedings of the 2008 International Workshop
on Cooperative and Human Aspects of Software Engineering, ACM, Leipzig,
Germany, 2008, pp. 1–4.

[29] J. Froehlich, P. Dourish, Unifying artifacts and activities in a visual tool for
distributed software development teams, in: Proceedings of the 26th
International Conference on Software Engineering, IEEE Computer Society,
2004, pp. 387–396.

[30] L. Hattori, M. Lanza, Syde: a tool for collaborative software development,
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, vol. 2, ACM, Cape Town, South Africa, 2010, pp. 235–238.

[31] J.T. Biehl, M. Czerwinski, G. Smith, G.G. Robertson, FASTDash: a visual
dashboard for fostering awareness in software teams, in: Proceedings of the
SIGCHI conference on Human factors in computing systems, ACM, San Jose,
California, USA, 2007, pp. 1313–1322.

[32] B. Bruegge, A.H. Dutoit, T. Wolf, Sysiphus: enabling informal collaboration in
global software development, in: International Conference on Global Software
Engineering (ICGSE’06), Florianopolis, Brazil, 2006, pp. 139–148.

[33] B. Bruegge, A.D. Lucia, F. Fasano, G. Tortora, Supporting distributed software
development with fine-grained artefact management, in: Proceedings of the
IEEE International Conference on Global Software Engineering, IEEE Computer
Society, 2006, pp. 213–222.

[34] F. Calefato, D. Gendarmi, F. Lanubile, Embedding social networking
information into jazz to foster group awareness within distributed teams, in:
Proceedings of the 2nd International Workshop on Social Software
Engineering and Applications, ACM, Amsterdam, The Netherlands, 2009, pp.
23–28.

[35] H. Bani-Salameh, C. Jeffery, J. Al-Gharaibeh, SCI: towards a social collaborative
integrated development environment, Proceedings of the 2009 International
Conference on Computational Science and Engineering, vol. 04, IEEE Computer
Society, 2009, pp. 915–920.

[36] A. Braun, A.H. Dutoit, A.G. Harrer, B. Brüge, iBistro: a learning environment for
knowledge construction in distributed software engineering courses, in:
Proceedings of the Ninth Asia-Pacific Software Engineering Conference, IEEE
Computer Society, 2002, pp. 197–203.

[37] A. Sarma, L. Maccherone, P. Wagstrom, J. Herbsleb, Tesseract: interactive visual
exploration of socio-technical relationships in software development, in:
Proceedings of the 31st International Conference on Software Engineering,
IEEE Computer Society, 2009, pp. 23–33.

[38] M. Cataldo, C. Shelton, Y. Choi, Y.-Y. Huang, V. Ramesh, D. Saini, L.-Y. Wang,
CAMEL: a tool for collaborative distributed software design, in: International
Conference on Global Software Engineering, Limerick, Ireland, 2009.

[39] L. Aversano, A.D. Lucia, M. Gaeta, P. Ritrovato, S. Stefanucci, M.L. Villani,
Managing coordination and cooperation in distributed software processes: the
GENESIS environment, Software Process: Improvement and Practice 9 (4)
(2004) 239–263.

[40] B. Meyer, Design and code reviews in the age of the internet, Communications
of the ACM 51 (9) (2008) 66–71.

[41] N. Boulila, Group support for distributed collaborative concurrent software
modeling, in: 19th IEEE International Conference on Automated Software
Engineering (ASE’04), Linz, Austria, 2004, pp. 422–425.

[42] M. Ali-Babar, The application of knowledge-sharing workspace paradigm for
software architecture processes, in: Proceedings of the 3rd International
Workshop on Sharing and Reusing Architectural Knowledge, ACM, Leipzig,
Germany, 2008, pp. 45–48.

[43] M. Ali-Babar, A. Northway, I. Gorton, P. Heuer, T. Nguyen, Introducing tool
support for managing architectural knowledge: an experience report, in:
Proceedings of the 15th Annual IEEE International Conference and Workshop
on the Engineering of Computer Based Systems, IEEE Computer Society, 2008,
pp. 105–113.

[44] C. Hill, R. Yates, C. Jones, S.L. Kogan, Beyond predictable workflows: enhancing
productivity in artful business processes, IBM Systems Journal 45 (4) (2006)
663–682.

[45] S. Sarkar, R. Sindhgatta, K. Pooloth, A collaborative platform for application
knowledge management in software maintenance projects, in: Proceedings of
the 1st Bangalore Annual Compute Conference, ACM, Bangalore, India, 2008,
pp. 1–7.

[46] A. Gupta, S. Seshasai, 24-hour knowledge factory: using Internet technology to
leverage spatial and temporal separations, ACM Transactions on Internet
Technology 7 (3) (2007) 14.
[47] M.R. Thissen, J.M. Page, M.C. Bharathi, T.L. Austin, Communication tools for
distributed software development teams, in: Proceedings of the 2007 ACM
SIGMIS CPR Conference on Computer Personnel Research: The Global
Information Technology Workforce, ACM, St. Louis, Missouri, USA, 2007, pp.
28–35.

[48] K. Bauer, M. Fokaefs, B. Tansey, E. Stroulia, WikiDev 20: discovering clusters of
related team artifacts, in: Proceedings of the 2009 Conference of the Center for
Advanced Studies on Collaborative Research, ACM, Ontario, Canada, 2009, pp.
174–187.

[49] M. Legenhausen, S. Pielicke, J. Ruhmkorf, H. Wendel, A. Schreiber, RepoGuard:
a framework for integration of development tools with source code
repositories, in: Proceedings of the 2009 Fourth IEEE International
Conference on Global Software Engineering, IEEE Computer Society, 2009,
pp. 328–331.

[50] D. Winkler, S. Biffl, A. Kaltenbach, Evaluating tools that support pair
programming in a distributed engineering environment, in: 14th
International Conference on Evaluation and Assessment in Software
Engineering (EASE), Keele University, UK, 2010.

[51] D. Xu, J. Kurogi, Y. Ohgame, A. Hazeyama, Distributed collaborative modeling
support system associating UML diagrams with chat messages, Proceedings of
the 2009 33rd Annual IEEE International Computer Software and Applications
Conference, vol. 01, IEEE Computer Society, 2009, pp. 367–372.

[52] M. Meisinger, A. Rausch, M. Sihling, 4everedit – team-based process
documentation management, Software Process: Improvement and Practice.
11 (6) (2006) 627–642.

[53] N.G. Lester, F.G. Wilkie, Evaluating UML tool support for effective coordination
and communication across geographically disparate sites, in: Proceedings of
the 12 International Workshop on Software Technology and Engineering
Practice, IEEE Computer Society, 2004, pp. 57–64.

[54] V. Garousi, J. Leitch, IssuePlayer: an extensible framework for visual
assessment of issue management in software development projects, Journal
of Visual Languages and Computing 21 (3) (2010) 121–135.

[55] Y. Assogba, J. Donath, Share: a programming environment for loosely bound
cooperation, in: Proceedings of the 28th International Conference on Human
Factors in Computing Systems, ACM, Atlanta, Georgia, USA, 2010, pp. 961–970.

[56] S. Kawaguchi, P.K. Garg, M. Matsushita, K. Inoue, MUDABlue: an automatic
categorization system for open source repositories, Journal of Systems and
Software 79 (7) (2006) 939–953.

[57] T. Krishnamurthy, S. Subramani, Ailments of distributed document reviews
and remedies of DOCTOR (DOCument Tree ORganizer Tool) with distributed
reviews support, i:n IEEE International Conference on Global Software
Engineering (ICGSE 2008), Bangalore, India, 2008, pp. 210–214.

[58] A. Fernández, B. Garzaldeen, I. Grützner, J. Münch, Guided support for
collaborative modeling, enactment and simulation of software development
processes, Software Process: Improvement and Practice. 9 (2) (2004) 95–106.

[59] R.L. Edwards, J.K. Stewart, M. Ferati, Assessing the effectiveness of distributed
pair programming for an online informatics curriculum, ACM Inroads 1 (1)
(2010) 48–54.

[60] V. Sinha, B. Sengupta, S. Chandra, Enabling collaboration in distributed
requirements management, IEEE Software 23 (5) (2006) 52–61.

[61] R. Bartholomew, Evaluating a networked virtual environment for globally
distributed avionics software development, in: Proceedings of the 2008 IEEE
International Conference on Global Software Engineering, IEEE Computer
Society, 2008, pp. 227–231.

[62] S.R. Haynes, A.L. Skattebo, J.A. Singel, M.A. Cohen, J.L. Himelright, Collaborative
architecture design and evaluation, in: Proceedings of the 6th Conference on
Designing Interactive Systems, ACM, University Park, PA, USA, 2006, pp. 219–
228.

[63] S. Norbert, Enhancing GSS-based Requirements Negotiation with Distributed
and Mobile Tools, 2005.

[64] L. Layman, L. Williams, D. Damian, H. Bures, Essential communication
practices for extreme programming in a global software development team,
Information and Software Technology 48 (9) (2006) 781–794.

[65] S. Salinger, C. Oezbek, K. Beecher, J. Schenk, Saros: an eclipse plug-in for
distributed party programming, in: Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering, ACM, Cape Town,
South Africa, 2010, pp. 48–55.

[66] F. Servant, J.A. Jones, A.v.d. Hoek, CASI: preventing indirect conflicts through a
live visualization, in: Proceedings of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering, ACM, Cape Town, South Africa,
2010, pp. 39–46.

	Tools used in Global Software Engineering: A systematic mapping review
	1 Introduction
	2 Systematic mapping review of tools to support GSE
	2.1 Definition of research question
	2.2 Conducting the search
	2.3 Screening of papers and Keywording of Abstracts
	2.4 Data/information extraction and mapping of studies
	2.4.1 Validation of tool classification scheme

	3 Results and discussion
	3.1 Classification of features
	3.2 Tool classification and description
	3.2.1 Tools and features used in each knowledge area
	3.2.1.1 Requirement Tools (SRTs)
	3.2.1.2 Design Tools (SDTs)
	3.2.1.3 Construction Tools (SCTs)
	3.2.1.4 Testing Tools (STTs)
	3.2.1.5 Maintenance Tools (SMTs)
	3.2.1.6 Configuration Management Tools (SCMTs)
	3.2.1.7 Engineering Management Tools (SEMTs)
	3.2.1.8 Engineering Process Tools (SEPTs)
	3.2.1.9 Quality Tools (SQTs)
	3.2.1.10 Miscellaneous Tool Issues (MTIs)
	3.2.1.11 Knowledge Management Tools (KMTs)
	3.2.1.12 Virtual Meeting Tools (VMTs)
	3.2.1.13 Socio-Cultural Tools (S-CTs)

	3.2.2 Common groups of features provided by the studied tools
	3.2.3 Tools’ evaluation

	4 Threats to validity
	5 Conclusions and future work
	Acknowledgements
	Appendix A
	Appendix B
	References

